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we have demonstrated wireless power de
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coil as shown in Fig. 1. In this figure w
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Fig. 2  Schematic showing physical configurati
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Fig. 3.  (A) Simulated maximum
separation for one-pair and two-pair
does not exist and is plotted as an in
efficiency for one-pair coil at varyi
when d12 = 5 mm and d34 = 0.5 mm. 
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respectively. Evaluating (2) and (3) 
conditions; � � ���������, 0.01 m
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From this analysis, we deduce that the t
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Fig. 4  Circuit schematic for (A) one-pair coils an

TABLE I 
COMPARISON OF POWER TRANSFER 

Configuration Ave. load power [mW]

One-pair coil 50.8 

Two-pair coil 50.2 
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III. METHOD

A. Spice Simulation 
In order to test out the

performed circuit simulatio
secondary coil is connected t
load )* � �� �+. The coup
from the mutual inductance
section and using inductance
for Coil1 and Coil2 for one-p
μH is used for Coil1 and Coi
and Coil4 for the two-pair c
designed to resonate at 6.78
capacitors are inserted in the 
simulation result is shown in
is the amount of power cons
at steady state, while efficien
input power. This efficien
maximum achievable values 
not optimized. From the resul
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coil consists of a 19 turns 
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The secondary coil is a 12 tu
diameter of 15 mm and 
intermediate coils adjacent t
coils have the same dimens
and flexibility makes it very 
eye. Figure 5 shows placem

 
Fig. 5.  Setup demonstrating wirele
and (B) two-pair coils system. 
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on in SPICE (Fig. 4). The 
to a realistic but not optimum 
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e derived from the previous 
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n Table 1. Average load power 
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ls case.  

on  
ricated using flexible printed 
[10]. They consist of #"�.! 
between polyimide substrates 
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to the primary and secondary 
sions. The spiral coil thinness 

suitable for insertion into the 
ment of the coils on a human 

ess power transfer using, (A) one-pair 
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head model. The larger transmit coil is connected to a 
driver circuit which is powered by a battery. The driver 
circuit generates a 6.3 MHz ac voltage which is used to 
drive the transmit coil. In order to operate the circuit at its 
optimal power transfer condition, a capacitor is connected 
in series to the transmit coil so that the circuit will resonate 
at close to 6.3 MHz. For the two-pair coils system, the 
intermediate coil adjacent to the transmit coil is placed 
directly under the transmit coil. It is connected to the coil at 
the other end through a matching capacitor so that the 
intermediate coils will also resonate at close to 6.3 MHz. 
For visualization, the secondary coil is placed on the eye 
instead of under the sclera. A frequency matching capacitor 
is connected in parallel to the receive coil. Finally, a 3.3V 
green LED (Agilent HSMM-C190-ND) is connected to the 
receive circuit to indicate that power is transmitted, thus 
successfully demonstrating wireless power transfer. It is 
worthwhile to note that the matching capacitors used need 
not be exact as the quality factor Q of the primary and 
secondary coils are not very high, typically about 50. 
However, techniques exist to optimize the topology of the 
tracks to increase Q [11]. 

C. Experiment 
In order to characterize the power transfer coils, a jig was 

built which allowed for relative translational and rotational 
displacement between the coils (Fig. 6). A vector network 
analyzer (Agilent E5071C-440) was used to measure the S-
parameters of the coils. Using the network analyzer we are 
able to determine single coil impedances as well as the 
coupling factor and maximum achievable efficiency for a 
pair of coils. In the first experiment, linear displacement 
between adjacent coil pair is varied and the maximum 
efficiency irrespective of load is measured. This was 
performed for both the one-pair and two-pair coils case. 
The measured result is shown in Fig. 7 (A). This result 
closely resembles the plot in Fig. 3 (A). In another 

experiment, a 220 � resistive load is connected to the 
rectified output of the secondary coil of the one-pair coils. 
The secondary coil was rotated about a vertical axis 20 mm 
away from the primary coil. The measured load power is 
normalized to the maximum power value at 0 deg rotation. 
The measured result is shown in Fig. 7 (B). The result 
shows that rotation causes a reduction in received power by 
more half when an axial misalignment of 35/ or more is 
introduced. 

We have applied a smaller modified version of the two-
pair coils to an animal experiment. In the experiment, the 
secondary coil is inserted into the suprachoroidal space of 
the eye near the pars plane region. The primary coil is 
located on the skin around the head. One end of the 
intermediate coils is then placed under the skin adjacent to 
the primary coil with the other end placed on the sclera 
right above the secondary coil. The surgery required to 
place the coils in position is relatively easy compared to a 
full vitrectomy which would otherwise be required to 
implement a one-pair coils solution. We demonstrated that 
the two-pair coils are capable of transferring power 
wirelessly through skin and sclera of the eye. 

 
Fig. 6.  Setup for characterizing wireless power transfer for the one-pair
coil system. 

secondary coil

primary coil

 
Fig. 7.  (A) Plot of measured efficiency due to translational displacement 
between coils for one-pair and two-pair coils.  (B) Plot showing rotational 
displacement between coils for one-pair coil. 
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IV. CONCLUSION 
In this paper we have investigated the use of a one-pair 

and two-pair inductive coils for demonstrating wireless 
power transfer. Using the latter approach, we can overcome 
the problems associated with a one-pair coils system, where 
coupling variations and difficulty in surgery impede its 
adoption for use in a retinal prosthesis. There are no 
restrictions in using the two-pair coils system on different 
types of retinal implant locations; epiretinal, subretinal or 
suprachoroidal. We have successfully demonstrated power 
transfer above the 3.3 V threshold and 50 mW required by 
the implanted device using a two-pair coils solution. 
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