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Abstract—A tissue bath system, to be used as an alternative to 

complex perfusion chambers, was constructed for use in 

cardiac electrophysiological studies. This system consists of an 

acrylic chamber to hold circulating physiological medium such 

as DMEM, suspended in a water bath warmed by a hot plate. 

Temperature and pH were controlled to mimic physiological 

conditions. Rat and porcine cardiac tissues, were used to test 

viability of the conditions presented in the bath system. Using a 

cardiac mapping system, the tissues were stimulated and 

responses recorded. From the recordings we were able to 

calculate conduction velocities and spatial dispersion of 

activation indices. The results are comparable to previous in-

vivo work, which suggests that the tissue bath system design 

can maintain tissue viability. This tissue bath system is a 

relatively simple alternative for ex-vivo testing of cardiac 

tissues. 

 

Index Terms—Isolated tissue, ex-vivo characterization, cardiac 

mapping. 

 

I. INTRODUCTION 

 myocardial infarction (MI), more commonly referred  

as a “heart attack”, is a condition that occurs due to a 

period of disrupted blood supply to a portion of the heart 

resulting in tissue death. Every year in the United States, 

there are an estimated 610,000 new and 325,000 recurrent 

myocardial infarctions [1]. Patients suffering from MI are at 

risk for mechanical and electrical complications such as 

cardiogenic shock due to insufficient perfusion of oxygen 

and nutrients to the tissue. This can lead to arrhythmias or 

rupture of the interventricular wall, both common conditions 

following MI. Recently, scientists have shown interest in the 

research of tissue engineered cardiac patches as an 

alternative to treat myocardial infarction and restore normal 

cardiac function [2], [3]. The development of tools and 

techniques capable of acquiring electrophysiological and 
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pharmacological properties and functionality of isolated ex-

vivo cardiac tissues for comparative analysis is becoming 

more common. 

A standard way to characterize these ex-vivo tissues is 

through the use of perfusion chambers for isolated tissues 

[4], or the use of the Langendorff perfused model for small 

animal hearts, often utilized in combination with an 

electrode array [5], an optical mapping system with voltage 

sensitive dye [6], or one lead ECG recordings [7]. These 

methods, however, are usually expensive and require 

specialized instrument systems. 

 The objective of this project was to design and test an 

inexpensive, simple alternative for a tissue bath system that 

can be used to characterize the electrical properties of 

isolated ex-vivo heart tissues in physiologically relevant 

conditions.  

II. METHODS AND MATERIALS 

A. Construction of tissue chamber 

The bath system was constructed to include a rectangular 

acrylic chamber equipped with tissue clamps and supports 

on each corner. The chamber was filled with enough 

Dulbecco's Modified Eagle Medium (DMEM, Fisher 

Scientific) to cover the tissue sample by 1-2 mm and was 

continuously circulated at 120 mm/min using a Masterflex 

tubing pump. Temperature inside the chamber was 

maintained at 37±0.5 ºC using a ceramic hotplate (C-MAG 

HP7 IKA®) and a water bath (metal pan filled with water). 

The acrylic chamber was set inside the metal pan with the 

water level high enough to surpass the medium level inside 
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Fig. 1.  Cross sectional view of the constructed bath system for 
electrophysiological characterization. 
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the tissue chamber. The pH was maintained at 7.32±0.05 by 

bubbling in CO2 using a pH controller (BL931700, Harvard 

Apparatus) (Fig. 1). 

B. Evaluation of cardiac tissue 

In order to evaluate the capability of maintaining relevant 

physiological conditions with our system, we tested rat and 

porcine cardiac tissues. A rapid heart extraction after 

isoflurane anesthesia was performed via median sternotomy 

on four male Sprague Dawley rats weighing between 354 

and 413 g. Porcine samples were obtained from four cross 

bred pre-natal piglets weighing between 500 and 1200 g, 

93% of term (115 days); piglets were euthanized using an 

injection of Butler Somnasol Euthanasia-III solution 9-10 

days after birth. Both sets of excised hearts were then rinsed 

in warmed 37 ºC saline solution, dissected through the right 

ventricular wall to allow the tissue to lay flat with the 

epicardium of the left ventricle facing up, and subsequently 

submerged inside the tissue bath system. 

 Tissue was constantly assessed visually for viability. 

This judgment was based on color, texture, coagulations and 

hardness of the tissue; the experiment was terminated when 

tissue hardened and no further electrical response was 

observed after stimulus.  

Each tissue sample was stimulated and electrograms were 

recorded using our current cardiac mapping system [8], 

consisting of an array of 14x14 Ag/AgCl coated copper 

electrodes connected to a data acquisition card with 

LabVIEW interface capable of recording independent analog 

signals in each interior electrode (192 total). The pacing 

threshold was determined using a 3 ms pulse width square 

wave stimulus at 1 Hz for five second duration, delivered 

from a line of electrodes bordering one side of the electrode 

array situated at the base of the heart. The initial stimulus 

amplitude was 0.5 mA, increasing by 0.1 mA until an active 

response was achieved. The tissues were stimulated with 

pacing episodes of 5, 10, 20, 60, and 300 seconds at 1.5 

times the pacing threshold value; temperature and pH were 

recorded at the end of each pacing episode. 

C. Data Analysis 

The activation time for each electrode was determined as 

the minimum value of the first derivative from each 

electrogram recorded during pacing [9]. Pacing episodes 

were then analyzed for electrical wavefronts and activation 

contour maps were obtained. Conduction velocity vector 

fields and mean conduction velocities (CV) for each episode 

were estimated using MATLAB as in [10]. Spatial 

dispersion of activation index (DI) was calculated in terms 

of the 5th, 50th and 95th percentiles (P5, P50, P95, 

respectively) of the maximum difference between activation 

times according to (1) [11]. 
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III. RESULTS 

Temperature and pH were maintained in the appropriate 

range with little fluctuation (37±0.5 ºC and 7.32±0.05 

respectively). Both samples visually maintained a healthy 

color and responded to pacing stimulus throughout the 

experiment protocol, approximately 40-50 minutes.  

An active response was successfully achieved in the 

samples and data analysis is summarized in Table 1. 

 The activation wavefronts were consistent in the pacing 

episodes. Figure 2 shows the activation time contour map for 

one pacing episode from two animals along with the 

respective conduction velocity vector field. 

 

IV. DISCUSSION 

The results obtained for mean conduction velocity and DI 

are comparable to previous studies [12-15].  

The use of tissue baths is not as common as the use of the 

Langendorff model for ex-vivo electrophysiological studies, 

but still proves to be an accessible and effective method for 

those researchers interested in cardiac mapping. Bath 

systems, like the one designed in this study, present an 

alternative that could also be used for tissue-engineered 

cardiac patches. It is still crucial to control temperature and 

pH, since these parameters must be in balance to produce 

consistent measures of electrophysiologic characteristics 

[16]. 

V. CONCLUSIONS 

Our system provides an accessible and reliable option for 

mapping of different cardiac tissues. A majority of the 

elements used are readily available to most labs, therefore 

the acquiring of new equipment may be only limited to 

obtaining a pH control method. The use of tissue engineered 

characterization techniques will play an important role in the 

near future, as many researchers are developing therapies 

requiring cultured cells, scaffolds, and patches designed for 

implantation in the human body and the interest in ex-vivo 

electrophysiology and pharmacology studies continues 

increasing. 
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TABLE I 
SUMMARY OF EXPERIMENTS AND COMPUTATIONS 

 
Rat  
samples 

Porcine 
samples 

Number of animals 4 4 

Successful pacing episodes (N) 25 25 

Mean CV (m/s) 1.14±0.21 0.79±0.24 
Mean DI (ms) 1.06±0.24 1.47±0.34 
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Fig 2.  Activation time contour maps after pacing (ms) and conduction velocity vector fields for rat (a) and (b), and porcine (c) and (d) samples, 
respectively. Conduction velocity vector length is proportional to conduction velocity magnitude. Stimulation was delivered from the bottom edge of 

each map which corresponds to the base of the heart. The 14x14 electrode array is 8x8 mm. 
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