
  

  

Abstract— In critical care patient management, extensive 
and invasive patient monitoring is routinely performed in order 
to quantify patient status in view of therapeutic interventions. 
Little quantitative integration is performed when collecting 
information from multiple monitors, and processing algorithms 
are often based on little physiological understanding. 
Mechanistic modeling can offer insight into the mechanisms 
underlying patient stability and sensitivity to alterations in 
physiological variables. Starting from existing models, we 
construct an integrated model which combines detailed neural 
cardiovascular regulation with realistic circulation modeling, 
using Monte-Carlo techniques for reparameterisation when 
merging the two models. The combined model is analyzed in 
terms of its dynamical stability and sensitivity to parameter 
perturbations under simulated conditions of fluid deficit, 
anaesthesia, and dilatative cardiomyopathy. The results 
exemplify how a structural model can serve as a quantitative 
guide in assessing how different underlying patient states can 
alter the haemodynamics impact of external therapeutic 
intervention. 

I. INTRODUCTION 

A. Management of high-risk surgery and ICU  patients 
In the care of critically ill patients requiring major, high-

risk interventions such as organ transplant or cardiac 
surgery, sudden episodes of hemodynamic instability, 
hypotension and cardiac arrest can often result in severely 
insufficient perfusion of vital organs. Choosing the wrong 
intervention can result in a dramatic decrease in survival 
chances, as well as in an increase in the need for peri- and 
post-operative care and associated social and financial 
burden for patients, hospitals and governments. Since the 
outcome (or even the direction of the outcome [1]) of a 
particular intervention (such as inotrope administration or 
fluid resuscitation) is highly dependent on the underlying 
patient state (due to e.g. influence on anaesthesia on neural 
control of heart rate, current fluid balance, pathological 
subsystem alteration) it is imperative that acute risk-
assessment and subsequent action be guided by informative, 
integrated intra- and peri-operative patient monitoring 
systems [1] that should ideally provide a comprehensive, 
real-time picture of organ function and interplay. 

 
While in principle recent technological advances target 
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the estimation of parameters that correlate well with patient 
physiopathology (fluid status, stroke volume, cardiac output, 
tissue oxygenation, pulmonary edema), such estimates are 
obtained through stand-alone devices implementing single-
channel averaging/thresholding algorithms that do not 
operate in an integrated manner and are based on little 
physiological understanding. This subjects patients to 
cumbersome instrumentation, may produce conflicting 
estimates and generates a significant number of 
inaccurate/false alarms [2].  

B. Clinically targeted modeling  environment 
The implementation of physical modeling tools in a 

patient-care setting can provide a major access pathway to 
information which may be readily re-cast into clinically 
useful form. In particular, if the physiological subsystem at 
hand is modeled from a mechanistic point of view [3,4] (i.e. 
injecting a priori knowledge about system dynamics), model 
output as well as parameter values can be readily related to 
their real-world physiological counterparts, which often 
cannot be directly measured (e.g. neural cardiovascular 
control gains, ventricular contractility, stroke volume, 
peripheral resistances), and translated into clinical 
intervention strategies. The aim of this study is to design a 
model which integrates: 

 
a) detailed description of neural blood pressure control 

dynamics, allowing to separate afferent baroreceptor activity 
from efferent sympathetic/parasympathetic activity as well 
as describe intra-beat transmitter dynamics  

b) a lumped-parameter representation of the whole 
circulatory system able to reproduce main features of arterial 
and venous pressure waveforms as well as to separate upper 
body, renal, splanchnic and lower body circulations. 

 
The integrated model is analyzed in terms of its dynamical 

stability and parameter sensitivity of output variables which 
are representative of patient status (e.g. heart rate, cardiac 
output, arterial and venous pressures, pulse pressure) as well 
as their variability under the simulation of variety of 
circumstances (fluid deficit, anaesthesia, pathological 
subsystem alterations) which are relevant to the OR and ICU 
setting. The results of such simulation can serve as a guide 
in choosing the right patient-state dependent intervention 
based on the particular therapeutic goal at hand.  

II. METHODS 

A. Integrated Model Structure 
We base our analysis on a hybrid model [5] where 
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variables are a continuous function of time, and a continuous 
sinus node phase is introduced whose velocity is influenced 
by neural firing rates thorough autonomic neurotransmitter 
kinetics. When the sinus node phase crosses a certain 
threshold, a new heart beat is generated (integrate and fire 
model) and discrete beat-to-beat valued are realized (sample 
and hold mechanism). The pacemaker model includes 
characteristic baroreceptor sigmoid responses, the 
dependency of the sinus node response to neurotransmitter 
stimulation (modeled through a phase effectiveness curve, 
see below) and separate time delays for sympathetic and 
parasympathetic nervous system dynamics, and is described 
as follows (the dot denotes a time derivative): 

 
- Baroreceptor activity bν  as a function of pressure p :  

( ) pkppkb 201 +−=ν  (1) 
- Sympathetic firing rate sν : 

[ ]b
b
sss k ννν −= 0,0max  (2) 

- Parasympathetic firing rate pν :  

[ ]b
b
ppp k ννν += 0,0max  (3) 

- Cardiac concentration of sympathetic transmitter 
(accounting for delays in sympathetic action) cNac :  
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- Phase of the sinus nodeϕ : 

0T
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- Sympathetic influence on the phase velocity of the sinus 
node sf : 
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- Parasympathetic influence on the phase velocity of the 
sinus node, assuming rapid transmitter kinetics and 
including the phase effectiveness function ( )ϕF  [6] pf : 

( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )33

3
3.1

2
,

2

2
,

18.01
145.0

,
ˆ

ˆ1

ϕ
ϕϕϕϕ

ϕ
νν

ν
θννθν

θ

θ
ϕ

−+−
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−+−−=

F

Fttkf
p

p

p

p
ppppp

p
p  (7) 

 
The neural control model is parameterised by the vector 

[ ]T
210 ,...,, kkp=T (see [5] for values). Further, the 

circulatory system is described by adapting a 21-
compartment model [7] based largely on the circuit analog 
representation of a vascular segment, comprising of 
seventeen vascular and four cardiac compartments as well as 
a neural control model of peripheral resistances whose 153 
parameter values have been carefully adjusted to reproduce 
human physiology and pathology in a variety of 
circumstances, both steady-state and transient (see [8] for 
values). The resulting full system is parameterized by a 182-

element vectorΨ . A fourth order Runge-Kutta scheme with 
s10 3− fixed step size [5] was used in all simulations. 

B. Monte-Carlo based reparameterisation of neural 
control model 
In adapting the neural control model [5] for integration 

with the circulation model, it is crucial to carefully tune 
parameter values in order for the combined model to 
faithfully reproduce physiological behaviour. The default 
parameter values in [5] result in model output which is not 
representative of a healthy population average (e.g. mean 
arterial pressure at approximately 110 mmHg with a mean 
heart rate of approximately 50 bpm). We therefore chose to 
partially reparameterize the model through a Metropolis-
Hastings based Monte-Carlo algorithm, adopting the output 
of the original circulation model as a “gold standard”. 
Specifically, we chose to re-estimate values for the 
parameters which are most likely to reflect patient-specific 
physiology (arterial pressure set point, gains which enter the 
dynamics in a non-mutually multiplicative way and phase 
velocity time constant), i.e. the vector ,TΘ ⊂ where 

[ ]T0210 ,,,,, Tkkkkp ps
CcNa ϕ=Θ . We generated a 1000 second 

long arterial pressure (ABP) and RR interval time series 
( p and targetr , respectively) from the circulation model. In 
order for this data to contain as rich as sample of model 
dynamics as possible, we included several physiological and 
pathological maneuvers in the simulation (Fig. 1). 
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Fig. 1. Target time series of ABP (red, top) and RR interval (black, bottom) 
used for Monte-Carlo simulations generated with the circulation model. 
Simulations include various breath-hold maneuvers, hemorrhage and fluid 
administration (increase in blood volume after hemorrhage). 

 
After an initial random guess 0Θ for the parameter vector 

Θ  (compatible with theoretical parameter bounds and 
contained within a 1%-1000% range of the default parameter 
values in [5]) the neural control model was evolved 
iteratively with p as input while cyclically varying the 

elements of Θ by a random amount sampled from a 
triangular distribution between ±30% of the current value 
and employing the resulting thj RR interval time series 

jr in the calculation of the log-likelihood 
( )2targetr∑ −−=

i
i

j
i

j rll . A parameter variation at the 
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( )th1+j step was accepted and the Monte-Carlo chain was 
stepped forward if [ ] 1exp 1 >−+ jj llll . Upon failure in 
satisfying this condition, the chain was stepped forward if 

[ ] α>−+ jj llll 1exp , whereα was sampled from a constant 
distribution with bounds [0,1]. Whenever the acceptance rate 
reached a bottom threshold, the width of the distribution 
from which parameter variations were sampled was 
restricted to ±10%. 410 Chains of 4102 × iterations each 
were computed (approximately 4102 × hours of CPU time) 
and the chain which ended in the point in parameter space 
yielding the highest log-likelihood was chosen as the new 
parameter vector for the neural control part of the integrated 
model.  

C. Parameter sensitivity of full model 
The combined model provides values for a number of 

variables such as compartmental blood pressures, vascular 
volumes, flows, cardiac capacitances, peripheral 
capacitances and resistances. In order to be able to employ 
the model as an interventional guide for clinical settings, we 
investigated the local sensitivity of model output to 
variations in parameter values. Specifically, we computed 
the sensitivity of mean values (computed over 100 s of 
simulation after discarding the first 70 s in order to allow the 
system to reach equilibrium) of 11 output variables (heart 
rate, mean arterial pressure, mean venous pressure, cardiac 
output, systolic arterial pressure, diastolic arterial pressure, 
pulse pressure, systolic pressure slope, systolic time, 
diastolic time) and of the variability (standard deviation) of 
the last 7 variables in this list to local perturbations between 
-8% and +8% in all 181 parameter values. Denoting the 
parameter set-point around which we operate as 0Ψ  (see 
above) which produces a local equilibrium output vector 

0Η  containing averaged variables and standard deviations, 
we compute the (approximate) “normalized” Jacobian J , 

where 
j
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0
 using a five-point, fourth-order 

accuracy difference scheme. We also compute “pure” 

second order sensitivities as ( )
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measure of the reliability of the first order sensitivity. 

III. RESULTS 
The Monte-Carlo reparameterisation yielded the vector 
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values were adopted in the stability and sensitivity analyses. 

A. Bifurcations in the full model 
Bifurcations can occur as a function of the coupling 

between the two oscillators (cardiac pacemaker and 
baroreflex control loop). Following our reparameterisation, 
we carry out a bifurcation analysis in the full model in order 

to check which regime we are operating our model in. 
Varying the gain b

pk (default value 0.3) in steps of 0.005 

results in a period-tripling bifurcation at approximately 
5.0=b

pk , which could be interpreted as a form of 

alternans, followed by Hopf bifurcations at approximately 
26.1=b

pk  (Fig. 2). No other bifurcations were found when 

investigating variations in gains [5].  
 

 
Fig 2. Bifurcations in RR interval generated by full model response when 

varying 
b
pk . 

B. Sensitivity analysis 
We performed a local sensitivity analysis as described 

above a) in our baseline model, b) subtracting 1 liter of 
blood (fluid deprivation before and during surgery) c) 
reducing all central nervous system gains to half their 
original value (simulation of sedation/anaesthesia) and d) 
doubling left ventricular compliance (simulation of left 
dilatative cardiomiopathy).  

 
We present a subset of the results of analyzing the first 

(selected data shown) and second order (data not shown) 
sensitivities of 20 output variables to 182 parameters. All 
figures show the top-10 parameters (those to which the 
output variable was found to be most sensitive) in situation 
a), and the corresponding sensitivities in b)-d) (see [8] for 
details on the insets).  
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Fig. 3a. Sensitivity of RR interval to parameter variations. Inset shows 
parameter ranking. Blue circles: healthy. Red Squares: Fluid deprived. 
Yellow Diamonds: Anaesthesia. Green Triangles: Left dilatative 
cardiomyopathy.  
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Fig. 3b. Sensitivity of RR interval to parameter variations. Inset shows 
parameter ranking. See Fig. 3a for symbols. 

 
RR interval is seen to be most sensitive to resting heart 

period, aortic resistance, peripheral and cardiac control set 
points and all gains of the neural control model, but this 
sensitivity is somewhat reduced under fluid deprivation and 
strongly reduced when under (simulated) anesthesia – i.e. 
lowering gains also lowers the sensitivity to them. 
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Fig. 4. Sensitivity of mean ABP to parameter variations. Inset shows 
parameter ranking. See Fig. 3a for symbols. 

 
Fluid deprivation strongly reduces the sensitivity of RR 

interval variability to all parameters, while under depressed 
control mechanisms the aortic resistance becomes dominant 
in determining RR variability (data not shown). Control set 
points (and obviously total blood volume) are most efficient 
in altering mean ABP, and this sensitivity is strongly 
increased under fluid deprivation. A similar pattern is 
observed for CVP, however the latter seems to be much 
more sensitive to zero-pressure filling volumes. 
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Fig. 5. Sensitivity of CVP to parameter variations. Inset shows parameter 
ranking. See Fig. 3 for symbols. 

IV. DISCUSSION AND CONCLUSION 
 

The combined model is able to reproduce original 
circulation model dynamics while providing more detailed 
information and control about the neural part of heart rate 
dynamics, and exhibits complex nonlinear behaviour in 
parameter regions which are beyond physiological range, but 
could possibly become relevant in pathological situations. 
Monte-Carlo based reparameterisation allows sensible 
integration of models and possibly patient specific model 
titration, which will be the object of future work. Subsequent 
Sensitivity analysis reveals a wealth of subtle interconnected 
and operating point-dependent regulatory mechanisms, 
which we plan to explore as a potential quantitative 
guideline for model-guided patient management algorithms. 
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