
  

  

Abstract— We present a comprehensive probabilistic point 
process framework to estimate and monitor the instantaneous 
heartbeat dynamics as related to specific cardiovascular control 
mechanisms and hemodynamics. Assessment of the model’s 
statistics is established through the Wiener-Volterra theory and 
a multivariate autoregressive (AR) structure. A variety of 
instantaneous cardiovascular metrics, such as heart rate (HR), 
heart rate variability (HRV), respiratory sinus arrhythmia 
(RSA), and baroreceptor-cardiac reflex (BRS), can be 
rigorously derived within a parametric framework and 
instantaneously updated with an adaptive algorithm. 
Instantaneous metrics of nonlinearity, such as the bispectrum 
of heartbeat intervals, can also be derived. We have applied the 
proposed point process framework to experimental recordings 
from healthy subjects in order to monitor cardiovascular 
regulation under propofol anesthesia. Results reveal interesting 
dynamic trends across different pharmacological interventions, 
confirming the ability of the algorithm to track important 
changes in cardiorespiratory elicited interactions, and pointing 
at our mathematical approach as a promising monitoring tool 
for an accurate, noninvasive assessment of general anesthesia. 

I. INTRODUCTION 
N recent years, advanced statistical models have been 
developed for evaluating the heartbeat dynamics [1-3]. 
Heartbeats, once detected from continuous 

electrocardiogram (ECG) signal, are treated as discrete 
events that can be modeled by a stochastic point process [2, 
3]. Various probabilistic models (e.g., the inverse Gaussian, 
Gaussian, lognormal, or gamma distribution) can be used to 
model the heartbeat interval [4], whereas its mean is 
modulated by previous inter-beat intervals. Nonlinearity of 
the heartbeat dynamics, as well as the interactions between 
the heartbeat and other cardiovascular measures, have 
always been subject of important studies in the last decades. 
In light of the Wiener-Volterra theory, we present a 
comprehensive point process framework to include the 
interactions between the heartbeat intervals and other 
cardiovascular measures such as respiration and arterial 
blood pressure, as well as assessing nonlinear heartbeat 
dynamics. 
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II. METHODS 

A. The Heartbeat Interval Point Process Model 
Given a set of R-wave events {uj}j=1

J detected from the 
electrocardiogram (ECG), let RRj = uj -uj-1 > 0 denote the jth  
R-R interval. By treating the R-waves as discrete events, we 
develop a point process model for the heartbeat interval. 
Assuming history beat dependence, the waiting time t -uj 
(t>uj) until the next R-wave event can be modeled by an 
inverse Gaussian model [2]:  
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where uj denotes the previous R-wave event occurred before 
time t, θ > 0 denotes the shape parameter, and μRR(t) denotes 
the instantaneous R-R mean. As HR is defined as the 
reciprocal of RR. by the change-of-variables formula, the 
mean and the standard deviation of HR can be derived [2], 

as given by
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B. Modeling the Instantaneous Mean Heartbeat Interval 
In general, let us consider a causal, continuous-time 

nonlinear mapping F between an output variable y(t) and 
two input variables x(t) and u(t). Expanding the Wiener-
Volterra series of function F (up to the second order) with 
respect to inputs x(t) and u(t) yields to a sum of first and 
second order convolutions of the inputs with Volterra 
kernels of appropriate orders [7].  In our model, y(t) will be 
replaced by μRR(t), x(t) will be replaced by the previous R-R 
intervals, u(t) will be replaced by either BP or RESP, or 
both, and the continuous-time integral will be approximated 
by a finite and discrete approximation. Our framework 
considers three important cases: 
Case 1: Univariate Model. Dropping off the terms that 
involve all of covariate terms in the Volterra series 
expansion, we obtain a discrete-time system: 
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where the first two terms represent a linear autoregressive 
(AR) model of the past R-R intervals, 0 ( )a t  compensates the 
nonzero mean effect of the R-R measurements, and 
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Case 2: Multivariate Model. Dropping off the last two 
quadratic terms in the Volterra series expansion, we obtain 
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which yields a bivariate bilinear system. Here the covariate 
COV = [BP RESP] measurements are assumed to have the 
mean subtracted as for RR in (2) [16]. 

Case 3: ARIMA (ARX on the differences) Linear 
Multivariate Model. We define the “increment of the R-R 
series” { } { }1t i t i t iRR RR RRδ

− − − −
−≡ and the “increment of the 

covariate series” { } { }1t i t i t iCOV COV COVδ
− − − −

−≡ , and model the 
instantaneous heartbeat interval mean by  
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where 0 ( )a t  in (3) has been replaced by 1tRR
−  in (4) [8]. 

C. Frequency Analysis 
From Equation (2), the instantaneous R-R spectrum of the 
linear part is  
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With the time-varying AR coefficients {ai(t)} estimated 
from the point-process filter, we may evaluate the spectral 
power of Eq. (5) at different ranges (LF, 0.04-0.15 Hz; HF, 
0.15-min{0.5,0.5⁄RR} Hz, where 0.5⁄RR denotes the Nyquist 
sampling frequency).  Let ( )th  denote a vector that contains 

all of 2nd-order coefficients { ( )}klh t ; in light of (5), we may 
compute an instantaneous index that quantifies the fractional 
contribution between the cross-spectrum and the cross-
bispectrum [6]: 
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where |·|  denotes either the norm of a vector or the modulus 
of a complex variable. The “ ≈ ” is due to a Gaussian 
assumption used in deriving (6). A small value of ρ implies 

a presence of significant (nonzero) values in { }klh  (i.e. 
nonlinearity), whereas a perfect linear Gaussian model 
would imply 1ρ = .(of note, ρ is indicated as rho in figures) 

In light of Eq. (3) we can compute the frequency response 
for the covariate transfer function (BP→RR or RESP→RR) 

 
2

2

2
1

1

12

1

( )

( , ) ,

1 ( )

|

|

j f

j f

q
i

i z e
i

p
i

i z e
i

b t z

H f t

a t z

π

π

−

=
=

−

=
=

=

−

∑

∑
  (7) 

where f1 and f2 denote the rate (beat/s) for the R-R and 
covariate intervals, respectively; here we assume f1 ≈ f2 ≡ f 
(namely, the heartbeat period is about the same as the 
covariate-event period). The order of the AR model also 

determines the number of poles, or oscillations, in the 
frequency range. Modifying the AR coefficients is 
equivalent to changing the positions of the poles and 
reshaping the frequency response curve. With the time-
varying AR coefficients {

i
a (t)} and {

j
b (t)} estimated from 

the point-process filter (section D. below), we may evaluate 
the dynamic frequency response of Eq. (7) at different 
ranges (LF, 0.04-0.15 Hz; HF, 0.15-min{0.5,0.5⁄RR} Hz, 
where 0.5⁄RR denotes the Nyquist sampling frequency). The 
frequency-dependent transfer function gain, characterized by 
|H12(f)|, represents the effect of the covariate on heartbeat, 
mediated by the neural autonomic reflex. In particular, RSA 
and BRS (two of the indices shown in figures) are computed 
from this gain for RESP and BP respectively. Since the R-R 
interval is influenced by respiratory input at the HF range, it 
is more common and meaningful to examine the baroreflex 
gain at the LF range. In light of Eq. (4), we can determine, in 
the same fashion as (7) and with similar interpretations [8] 
the differential transfer function. 

D. Adaptive Point Process Filtering and Goodness-of-Fit 
In order to empower the model in a nonstationary 

environment, we can recursively estimate the parameters via 
adaptive point process filtering at any time resolution. The 
state-space formulation of the discrete-time point process 
filtering algorithm is described in [5,6,7]. The choice of bin 
size (Δ) reflects the timescale of estimation interest, we often 
use Δ=5 ms. The point process filtering equations can be 
viewed as a point process analog of the Kalman filtering 
equations (for continuous-valued observations). Given a 
predicted (a priori) estimate, the innovations are weighted 
by an ‘adaptation’ gain to further produce the filtered (a 
posteriori) estimate. Since the innovations are likely to be 
nonzero in the absence of a beat, the parameters are always 
updated at each time bin. Goodness-of-fit of all models is 
evaluated using a Kolmogorov-Smirnov (KS) test based on 
the time-rescaling theorem, and the transformed quantiles’ 
autocorrelation function is further computed to check 
independence of the transformed intervals [5,6,7].  

E. Experimental Protocol 
A total of 15 healthy volunteer subjects (mean age 24 ± 4) 

gave written consent to participate in this study approved by 
the Massachusetts General Hospital (MGH).  Intravenous 
and arterial lines were placed in each subject.  Propofol was 
infused intravenously using a previously validated 
computer-controlled delivery system running STANPUMP 
connected to a Harvard 22 syringe pump (Harvard 
Apparatus, Holliston, MA).  Five effect-site target 
concentrations (0-4 mcg/ml) were each maintained for 15 
minutes respectively.  Capnography, pulse oximetry, ECG, 
and arterial BP (P1) were recorded (sampling rate 1 kHz) 
and monitored continuously by an anesthesiologist 
throughout the study. Bag-mask ventilation with 30% 
oxygen was administered as needed in the event of propofol-
induced apnea. Because propofol is a potent peripheral 
vasodilator, phenylephrine was administered intravenously 
to maintain mean arterial BP within 20% of baseline [7]. 
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Figure 1. Tracking results of various instantaneous indices for Subject 15. 
Three transient periods (level 0->1, level 1->2, level 2->3) are shown. 

 
Figure 2. Tracking results of various instantaneous indices for Subject 9. 
The two dashed lines (~ 2010 s and ~3000 s) mark the drug concentration 
level 0->1, (i.e., propofol administration onset time) and level 1->2, 
respectively. The dotted dashed line (~2960 s) marks the time when 
phenylephrine was administered; and the dotted line (~3125 s) marks the 
time of hand ventilation. 

III. RESULTS 
Results on application of our model framework include 

instantaneous assessment of HRV, RSA, Baroreflex (BRS), 
and of nonlinear dynamics in healthy subjects under 
progressive stages of anesthesia [4-8]. All instantaneous 
indices are estimated to accommodate the nonstationary 
nature of the experimental recordings. Overall, our 
observations have revealed interesting dynamic trends across 
the experiment. We are here showing two original examples: 
(1) Figure 1 shows a subject transitioning from level 0 to 
level 3. Clearly, HRV, RSA and BRS progressively 
decrease, accompanied by a relevant increase in linear 
cardiorespiratory coupling as a result of administration of 
the first propofol bolus (despite the small scale, note the two 
sharp drops in BRS at the level 1 2 and 2 3 transitions). 
(2) Figure 2 shows a different subject where, after first 
propofol administration, phenylephrine is administered to 
compensate a critical drop in blood pressure, followed by 
artificial ventilation. Here, a sharp decrease in RSA is 

observed with anesthetic intervention, respiratory coupling is 
then partly restored, but blood pressure progressively 
decreases to critical levels, possibly due to baroreflex 
failure. After phenylephrine is administered, baroreflex gain 
and blood pressure slightly recover, but fail to go back to 
baseline levels. Artificial ventilation reflects in RSA 
variability and acts to restore HRV, only partly succeeding 
in raising blood pressure levels. Table I further shows a 
statistical summary of levels 1-5 as compared with baseline, 
accompanied by a portrayal of the instantaneous dynamics 
observed within each level for the considered indices (Figure 
3), confirming the progressive decrease in HRV, RSA and 
BRS, as well as the linear cardiorespiratory coupling 
increase in the first two levels of anesthesia. 

TABLE I 
STATISTICS OF THE INSTANTANEOUS INDICES (SUBJECT 9, LEVELS 0-5) 

level μHR (bpm) σHR  (bpm) RSA 
(s/a.u.) 

Rho 
 (n.u.) 

BRS 
(s/mmHg) 

0 61.2±5.8 3.19±.92 20.8±1.7 0.88±.05 8.55±3.24 
1 61.8±2.7 2.25±.42* 34.7±1.5* 0.95±.01* 7.33±1.26* 
2 64.3±4.1 2.65±1.01 21.6±4.2 0.97±.01* 3.77±.64* 
3 67.1±2.5* 1.94±.67 16.1±.85* 0.85±.06 3.28±.42* 
4 63.7±3.5 1.98±.29* 13.4±1.3* 0.91±.09 6.05±.75* 
5 61.6±2.2 1.71±0.21 13.1±.56* 0.85±.09 1.51±.43* 

* significant P<0.05 by pairwise rank-sum test (compared to level 0) 

IV. DISCUSSION 
In a non-stationary scenario where the physiological state 

may change dramatically, dynamic assessment of 
cardiovascular control during the transient period is of vital 
importance. Overall, our observations have revealed 
important dynamics involved with induction of anesthesia. 
The study of the transient periods due to pharmacological 
and physical intervention has demonstrated the capacity of 
the point-process filter to quickly capture fast physiological 
changes in the cardiovascular system, for example when 
baroreflex responses are supposedly triggered, and 
consequently accompanied by a significant drop in the 
instantaneous baroreflex gain. The clear reduction of BRS 
with anesthesia might suggest that baroreflex responses are 
reset with propofol to control HR at a lower BP, and that 
BRS further decreased after administration as a result. The 
shift in the HR/BP set point may reflect the propofol’s 
systemic vasodilatory effect, whereas baroreflex impairment 
is most likely the result of disruption of cardiac control 
within the central nervous system. 

The dynamic estimates further suggest that RSA gradually 
decreases from baseline after administration of propofol 
anesthesia, that RSA is generally suppressed by 
phenylephrine; and that the linear interactions within the 
cardiorespiratory control remain stable or increase [5]. 
Specifically, RSA is likely to be mediated by withdrawal of 
vagal efferent activity resulting from either baroreflex 
response to spontaneous BP fluctuations, or respiratory 
gating of central arterial baroreceptor and chemoreceptor 
afferent inputs. Of note, we also observed an increase of 
nonlinearity in heartbeat interval dynamics from baseline to 
anesthesia, where the nonlinearity involved the bilinear 
interactions between RR and systolic blood pressure (SBP) 
accompanied by a significant decrease in linear coherence 
between these two series [7]. This seems to suggest that the 
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nonlinear component of heartbeat interval dynamics during 
anesthesia is mainly contributed from the cardiovascular 
(baroreflex) loop, whereas the linear interaction within the 
cardiorespiratory loop roughly remains unchanged. It is also 
possible that the respiratory system indirectly influences HR 
by modulating the baroreceptor and chemoreceptor input to 
cardiac vagal neurons. However, in our experimental 
condition, it is difficult to validate the separate influence of 
SBP from the influence of respiration on HRV. 

V. CONCLUSION 
A combined point process framework is proposed which 

enables us to simultaneously assess the linear and nonlinear 
indices of HRV, together with important cardiovascular 
functions of interest, in clinical recordings during induction 
of propofol anesthesia. All of these statistical indices may 
serve as potential indicators for ambulatory monitoring in 
clinical practice, and may particularly provide a valuable 
quantitative assessment of the interaction between heartbeat 
dynamics and hemodynamics during general anesthesia. 
More importantly, these quantitative indices could be 
monitored intraoperatively in order to improve drug 
administration and reduce side-effects of anesthetic drugs. 
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Figure 3. Estimates of the instantaneous indices for six drug concentration levels (0-5) for Subject 9. 
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