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I. INTRODUCTION 
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A. Upright Alignment of the 3D surface along the Y-axis 
The orientation of surface geometry is defined by the 
direction of the normal vector [7]. Following acquisition of 
the 3D torso image, we compute the surface normal for each 
triangle of the surface mesh as follows. For each triangular 
face of the mesh, if a and b are the two vectors denoting the 
two sides, then the normal vector is defined as 

.banormal ×=  The surface normal of the 3D surface (n) is 

then computed as n =
normal ∗ Δ( )

 Δ
  , where Δ is the area of 

each triangular face in a mesh. The 3D torso is then aligned 
orthogonal to the X-axis in order to achieve an initial 
forward facing upright orientation. The angle of rotation 
about the X-axis is determined as: 
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where ny  and nz  represent the y, and z components of the 
surface normal, and the transformation matrix defines the 
rotation of the 3D surface by α about the X-axis [7]. 

B. Image cropping  
In order to further fine-tune this initial alignment, the torso 
data are cropped to remove the arms and neck regions of the 
torso. This was implemented because the area of the arms, 
neck and legs captured in the 3D image is influenced by the 
width and height of the subject, respectively. This results in 
variability in the extent of the surface captured and image 
asymmetry. Thus, in order to achieve symmetrical 
uniformity, the neck, arms and legs of the torso image were 
cropped as follows. First, the 3D points are projected on the 
YZ plane. Figure 2A shows the histogram for the 3D torso 
points projected on the YZ plane. The valleys in the plot 
denote the location along the Y-axis where the image can be 
cropped to remove the neck and legs from the torso. These 
points are automatically computed by computing the slope 

dydz  of the histogram.  

 
Fig. 2:  (A) Histogram of 3D torso points projected on the YZ plane, (B) 
Histogram of 3D torso points projected on the XY plane that exhibits 
maximal information in the Z-direction. 
For example, the y coordinate, with the steepest decrease in 
the slope is noted as the cutoff crop point for the neck, 
beyond which the image needs to be cropped.  Similarly, to 
crop the arms, multiple XY projections of the torso are 
obtained along the Z-axis. The XY projection exhibiting the 
maximum count of y points for each corresponding x point is 
selected, and the slope dxdy  of the corresponding 
histogram (see Figure 2B) is computed. 

Then traversing to the right of the centroid (center of mass of 
3D point cloud) along the X-axis, the x coordinate exhibiting 
the maximum slope (steepest descent) denotes the location 
where the right arm should to be cropped. Similarly, 
traversing from the centroid to the left of the torso, we find 
the corresponding location at which the left arm should be 
cropped. Figure 3A shows the torso subsequent to the 
cropping of the arms, legs, and neck portions of the torso. 

 
Fig 3: (A) The 3D torso subsequent to image cropping for neck/legs and 
arms, (B) Final upright forward facing 3D torso obtained from automated 
alignment. 

C. Forward facing alignment of the 3D surface along the 
Z-axis 

The 3D torso is then aligned along the Z-axis to orient it 
in the forward facing direction. First, the surface normal of 
the cropped and smoothed 3D surface is computed as 
defined in equation (1). If nx ; the x component of the 
surface normal is negative, the torso faces towards the left, 
and if nx  is positive the torso faces toward the right. In order 
to obtain a forward facing orientation, the angle of rotation 
about the Y-axis is determined as: 
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is the transformation matrix to rotate the 3D surface by β 
about the Y-axis [7]. 

D. Horizontal alignment of the 3D surface along the X-axis 
Finally, the 3D surface is aligned horizontally along the X-
axis to orient the shoulders straight laterally. The surface 
normal of the torso after rotation about the Y-axis is 
computed. The angle of rotation about the Z-axis is 
determined as: 
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is the transformation matrix to rotate the 3D surface by γ 
about the Z-axis [7]. 

E. Final Alignment of the torso 
The angles of rotation α, β, and γ about the Y-, X-, and Z-

axes, respectively, determined above are used to obtain the 
final alignment of the raw data (unprocessed data acquired 
from the DSP 800). The final orientation of the torso is 
shown in Figure 3B.  
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III.  METHODS AND MATERIALS 

A. Imaging System 
The 3D surface images were obtained using the DSP 800 
(3Q Tech., Atlanta, GA). Each reconstructed surface image 
consists of 3D positions (x, y, z) and their corresponding 
color and texture information. 

B. Study Population 
Four Female patients (both breasts and nipples intact) who 
were scheduled for breast reconstruction surgery at The 
University of Texas MD Anderson Cancer Center were 
recruited for this study under a protocol approved by the 
institutional review board (IRB). In addition, four healthy 
female volunteers were commissioned under contract to 
participate in the study. The subjects (patients and 
volunteers) ranged in age from 30 to 64; 7 were white, 1 was 
african american. 

C. Study Design & Data Analysis 
Three observers manually aligned 3D images of the subjects 
using customized software developed by our group [5]. Two 
trials of alignments were performed at an interval of two 
weeks to include analyses of intra- and inter-observer 
variability. An upright forward facing manual alignment of 
the eight surfaces performed by an independent observer 
was chosen as the gold standard. Surfaces aligned using 
manual and automated methods were compared using the 
relative angle context distribution (RACD) signature 
described next. 

D. Relative Angle Context Distribution (RACD) 
Relative Angle Context Distribution (RACD) establishes 

the 3D point correspondence around a vertex in a surface 
mesh with all the other vertices with respect to the relative 
reference frame calculated using principal component 
analysis (PCA) [8]. The probability mass function of the 
resulting relative angle distribution defines the RACD; 
which can be used to determine the point correspondence 
between two 3D surfaces. The similarity between a pair of 
3D surface images can then be determined by comparing the 
distributions of the global relative angles context for 
corresponding points on the two surfaces. In this study in 
order to expedite processing, five points were used as the 
corresponding points at which the similarity between two 
surfaces was computed: centroid (center of mass), left 
nipple, right nipple, umbilicus, and sternal notch. First, the 
dissimilarity (dk) between the RACD of two corresponding 
points of the manually aligned, or automatically aligned 3D 
surfaces with the gold standard was computed as follows [8] 
 ( ) ( ) ( )  , jkikjik vpvpvvd ′′−=′  (5) 

where Vvi ∈  (set of 5 points including the centroid, left and 
right nipple, sternal notch and umbilicus) of surface   
(manually aligned or automatically aligned), and '' Vv j ∈  set 

of 5 points including the centroid, left and right nipple, 
sternal notch and umbilicus) of surface   (gold standard), and 

( )ik vp and ( )''
jk vp  are the probability mass functions. The 

similarity factor (sf) between the two 3D surfaces was 
computed as follows [8] 

 sf =   1− dk   vi ,vi
'  ( ) ( )  N

i=1

N

  (6) 

where v and v' represent the corresponding points in the two 
surfaces being compared and N is the total number of points. 
This method of comparing two 3D surfaces was validated 
using a symmetric 3D conical model surface as shown in 
Figure 4A. 

Fig. 4:  (A) 3D conical model used to validate the use of the RACD 
signature to compare two 3D surfaces, (B) Bland-Altman Plot comparing 
the sf of automated alignments with manual alignments. 

The model surface was independently rotated by 30° about 
the X-axis, and each rotated model was compared to original 
model to compute the similarity between the two surfaces 
using the RACD method and similarity factor. Following 
validation, the similarity factor was applied to compare the 
results of automated alignment with that of manual 
alignment. 

E. Statistical Analysis 
Intraclass Correlation Coefficient (ICC) was used for 
assessing the consistency or reproducibility of quantitative 
measurements made on the same subject. ICC<0.4 indicates 
poor reproducibility, 0.4≤ICC<0.75 indicates fair to good 
reproducibility, and ICC≥0.75 indicates excellent 
reproducibility [9]. ICC was used to determine the inter- and 
intra-observer variability in the manual alignment of 3D 
surfaces based on the similarity factor measurements. A 
Bland-Altman plot, which provides a visual and qualitative 
assessment of the agreement between two methods, was 
used to compare the similarity factor from manual alignment 
to that from the automated alignment [10]. 

IV. RESULTS 

A. Measurement of similarity between two 3D surfaces 
The RACD signature was first validated as an indicator of 
similarity between two 3D surfaces. The similarity factors 
determined using the RACD signature for comparing the 
model following defined rotations about the X-axis to the 
original model (unrotated, i.e., 0°) are shown in Table 1. A 
similarity factor of 1 indicates the same surface, whereas 0 
indicates dissimilarity between the two surfaces being 
compared. As seen in Table I, the sf is 1 when comparing the 
original model (0°) to itself. Following rotations, the 
similarity between the rotated surface and the original 
surface decreases and increases back to 0.99 (~1) for the 
180° rotation. These comparisons validate the use of the 
RACD signature for comparing two 3D surfaces. 

TABLE I 
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VALIDATION OF THE RACD SIGNATURE AS A SIMILARITY INDEX FOR 
COMPARING 3D SURFACES 

Rotation about the X-axis (°) Similarity Factor (sf) 
0 1.00 

30 0.88 
60 0.75 
90 0.22 
120 0.15 
150 0.33 

180 0.99 

B. Inter- and Intra-observer variability 
Manual alignment of the 3D torso by three different 
observers was assessed by comparing the manually aligned 
surfaces with the gold standard. The following assessments 
were performed (1) comparison of alignments performed by 
the same observer at two time points (two weeks apart), and 
(2) comparison of alignments performed by the two different 
observers. ICC was used to determine the consistency of 
manual alignments. There was excellent agreement in the 
spatial alignment performed in the two trials by all three 
observers. The ICC values for alignments made in trial1 and 
trial2 by observer1, observer2, and observer3 were found to 
be 0.78, 0.95, and 0.98 respectively. Table II presents data 
on the inter-observer variability. Overall, there was excellent 
agreement in the spatial alignment performed by different 
observers, with the exception of only a moderate agreement 
between Observer1 and Observer3 in trial 1. 

TABLE II 
ICC VALUES FOR INTER-OBSERVER MEASUREMENTS 

 ICC 
Trial 1 Obs 1 – Obs 2 0.80 

 Obs 2 – Obs 3 0.96 
 Obs 1 – Obs 3 0.64 

Trial 2 Obs 1 – Obs 2 0.97 
 Obs 2 – Obs 3 0.94 
 Obs 1 – Obs 3 0.95 

C. Performance evaluation of automated spatial alignment 
Finally, the automatically aligned surfaces were compared 
with the gold standard. The similarity factors obtained by 
comparing the manually aligned surface from trial 1, and the 
automatically aligned surfaces with the gold standard for the 
8 subjects are shown in Table III. 

TABLE III 
SIMILARITY FACTOR FOR MANUAL (TRIAL1) & AUTOMATED ALIGNMENTS 

Subject sf 
Observer1 Observer2 Observer3 Automated 

1 0.60 0.88 0.99 0.93 
2 0.99 0.97 0.98 0.97 
3 0.97 0.99 1.00 0.98 
4 1.00 0.97 0.98 0.96 
5 0.91 0.91 0.91 0.91 
6 0.58 0.50 0.51 0.56 
7 0.94 0.99 0.94 0.94 
8 0.94 0.99 0.94 0.98 

The manual spatial alignments taken over the two trial 
sessions by the three observers were averaged to obtain the 
reference set and used to assess the automated spatial 
alignment algorithm developed. The percentage of the 
difference between the two measurements divided by the 
mean of the two sets of measurements was computed as the 
relative error of magnitude (REM) [11]. REM scores less 

than 1% are deemed “excellent;” between 1 and 3.9%, “very 
good;” between 4 and 6.9%, “good,” between 7 and 9.9%, 
“moderate” and finally anything above 10%, “poor” [11]. 
The REM score for the automated alignment algorithm was 
found to be 2.8%. Finally, a Bland-Altman plot was used to 
compare the automatic spatial alignment’s similarity factor 
with that of the reference set. As seen from Figure 4B, the 
similarity factor in the spatial alignment made by the 
reference set (average value of all observers over all trials) 
and the algorithm are within 1.96 times the standard 
deviation bounds. 

V. DISCUSSION  
We present an algorithm for the automated spatial alignment 
of 3D torso images to the forward facing upright and straight 
position. Automating the process of alignment and 
orientation removes operator bias and permits robust and 
repeatable adjustment of surface images to a pre-defined or 
desired spatial geometry. The algorithm performs with a 
precision level of "precise" with a REM score of 2.8% (very 
good). The realignment allows uniform quantitative 
assessments to be performed and facilitates automated 
detection of fiducial points [6]. Future work, will compare 
the proposed method with existing 3D object alignment 
approaches, and evaluate the efficacy of automated fiducial 
point detection on the realigned images. 
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