
  

  

 
Abstract—The objective of this study is to develop an 
innovative close range digital photogrammetry (CRDP) 
system using the commercial digital SLR cameras to 
measure and reconstruct the 3D surface of prosthetics 
and orthotics.  This paper describes the instrumentation, 
techniques and preliminary results of the proposed 
system.  The technique works by taking pictures of the 
object from multiple view angles. The series of pictures 
were post-processed via feature point extraction, point 
match and 3D surface reconstruction. In comparison 
with the traditional method such as laser scanning, the 
major advantages of our instrument include the lower 
cost, compact and easy-to-use hardware, satisfactory 
measurement accuracy, and significantly less 
measurement time.  Besides its potential applications in 
prosthetics and orthotics surface measurement, the 
simple setup and its ease of use will make it suitable for 
various 3D surface reconstructions. 
 

I. INTRODUCTION 
rthoses are commonly used to stabilize joints, reduce 
pain and improve function. The National Health 

Interview Survey indicated that those using orthoses are over 
3.5 million in the U.S.A. and the total number of persons 
who will use orthoses is expected to double and reach 7.3 
million by the year 2020. Prostheses are needed for those 
with limb loss. Currently, there are about 1.9 million people 
living with limb loss. A prosthetic device can cost between 
$2,500 and $50,000 and an adult usually needs to replace it 
every one to three years.  As a child grows, he/she needs a 
new one every three to six months.  In clinical practice, an 
impression is taken via wrapping the body part using plaster 
bandage.  The whole procedure is labor-intensive, time-
consuming and uncomfortable to patient. The accuracy of 
the casted mold is subject to the clinician’s experience and 
technical skill as well as body shape changes caused by the 
pressure during the casting procedure. Both prostheses and 
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orthoses are closely contoured to the patient’s skin, thus a 
comfortable and perfect fit is the top priority for both 
patients and practitioners. Recently, more advanced 
technologies have been used to measure and reconstruct the 
3D shape of the body part via a reverse engineering 
approach. Among these, laser scanning technique has been 
commercialized and used in the clinical sites. The benefits of 
laser scanning include ease of use and high accuracy and 
precision. However, the long acquisition time (usually 
around minutes) inevitably introduces movement-related 
distortion.  Also the high cost of laser scanning equipment 
(usually $30,000-50,000) hinders its wide adoption.  This 
method of measuring shape is called time/light in flight 
which uses the direct measurement of the time of flight of a 
laser or other light source pulse [1]. In general, picosecond 
pulse width diode laser are essential to achieve 1mm 
resolution, which require expensive component to achieve 
reasonable accuracy.  In this study, we proposed an 
innovative close range digital photogrammetry (CRDP) 
approach using the commercial low cost digital SLR 
cameras to measure and reconstruct the surface of 
prosthetics and orthotics. There is great potential of 
performing precise 3D measurements using CRDP at a 
fraction of the time and cost of laser scanning with same 
level of accuracy.  

II. METHODOLOGY 

A. Data acquisition and calibration 
The fundamental principle used by CRDP is triangulation.  

As shown in Figure 1, by taking 2D digital images (photos) 
from multiple locations, the so called “line of sight” can be 
constructed from each camera to points on the object.  These 
lines of sight are mathematically intercepted to produce the 
3-dimensional coordinates of the points of interest.  In our 
preliminary study, the 3D measurements were performed on 
a Prosthetic plaster mold covered with a nylon sock.  To 
provide seamless 360-degree 3D surface model, we move 
the cameras’ position around the object to take multiple 
photos to achieve a 360 degree view configuration (Figure 
1), and an algorithm was developed to join the neighboring 
sets of point cloud and to generate the merged 360 degrees 
3D surface. 

The system hardware components are all commercial off-
the shelf hardware: a digital single-lens reflex (SLR) camera 
(Canon EOS Rebel 500D 15.1 MP) with Canon EF 50mm 
f/1.8 II camera lens was used to generate the source 2D 
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digital images.  The measurement can be taken under 
conditions of regular ambient lighting.  To achieve a 360 
degree view configuration, fifteen pictures from different 
view angles were taken. The whole measurement procedure 
takes less than one minute.  Please note that the 
measurement procedure is quite flexible and doesn’t require 
the knowledge of camera locations beforehand.  Whether 
these pictures were taken at different horizontal planes (due 
to inevitable movement) or at irregular angle distance, the 
calculation results remains unchanged. The detailed 
technical specifications of the camera are listed in Table 1.  
The choice of this camera assures stable interior geometry, 
(need to be calibrated), high resolution, ability of manual 
focus, high shutter speed, and low cost. 

 
Table 1. Specifications of the digital SLR camera. 

 

 
 

Fig. 1. Photogrammetry picture sequence 
 

Accurate camera calibration is essential in digital 
photogrammetry.  Primarily, camera calibration is to identify 
the characteristics internal to the camera that affect the 
imaging process.  Careful camera calibration will provide 
accurate information of the camera parameters such as 
position of the image center, focal length, scaling factors for 
row and column pixels, skew factor and lens distortion.  
Camera calibration has been extensively studied and a 
camera system is often modeled by a pinhole system with 
intrinsic parameters including focal length, the principle 
point, the pixel skew effect and the pixel size as well as 
extrinsic parameters including the rotation and translation 

from the world coordinate system to the local camera 
coordinate system.  

For camera calibration, a flat checkerboard is used to 
calculate the intrinsic parameters of the camera. In this 
study, we used a checkerboard with 10 × 10 mm squares. 
Images are taken with checkerboard posed at different 
angles. A series of images illustrated in Fig. 2 are used to 
obtain the intrinsic parameters of the camera using 
MATLAB (Mathworks Inc. MA, USA)[2]. 

 

 
Fig. 2. Images of checkerboard for camera calibration. 

B. Feature Point Extraction and Match process 
In CRDP, the correspondence problem only becomes 

feasible when the surfaces are textured and/or there are 
feature points easily distinguishable (e.g. image corners).  
Combining the requirement of a simple, portable, affordable 
and cost effective sensor that can perform real-time 
measurement on human body, we applied random color 
fabric paint to the outside surface of a stretchable nylon 
prosthetics sock.  In our preliminary study, the 3D 
measurements were performed on a Prosthetic plaster mold 
covered with the painted nylon sock, as shown in Fig. 3. 

 

 
Fig. 3. Plaster mold covered with painted sock. 

 
The point correspondence was established before 

construction of the 3D surface in space.  Scale Invariant 
Feature Transform (SIFT)[3] , which transforms image data 
into scale-invariant coordinates relative to local features, 
was implemented.  The SIFT algorithm uses difference of 
Gaussian kernels of varying widths to generate features 

Parameters Values 
Max resolution 4752x3168 
Sensor size 22.3x14.9 mm 
Total pixels 15.1 million 
Lens focal length (f) 50 mm 
Distance from object (D) 2 m 
Average image scale (m) 1:40 
Pixel size (p) 4.7 µm 
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along edges and at corners in the image.  A
region around each feature is calculated.  M
using SIFT is done by finding the c
descriptor between two images using a min
distance between the descriptor vectors. 
examined the correlation within windows
pairs of the feature point to further improv
the initial correspondence found by SIFT 
shows the feature points (>10000 points) 
pair of images.  Fig. 5 shows the points corr
applying SIFT match method.  It is shown 
correspondences were found that meet the 
the correspondences are found the next step
bad correspondences and estimate the epip
the system (i.e. Random Sample Consen
model fitting approach[4]). 

 

Fig. 4. Illustration of feature points 
 

Fig. 5. Illustration of point corresponden
 

C. 3D Scene Reconstruction 
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resultant 3D surface triangle mesh can be exported to 
various types of data format for CAD system. Currently, the 
STL format and AutoCAD DXF format are supported. After 
necessary adjustment for critical portion of the 3D limb 
model and smoothing, the 3D model can be fed into CNC 
machine or digital carver to manufacture the positive mold 
for prosthesis or orthotics. 

III. RESULTS 
In our measurement, a Canon speedlite 480EXII with 

shutter speed of 1/400, aperture of f/6.3 was used to take 15 
pictures from different view angles around the target object 
(a plaster positive mould) and reconstruct the 3D surface 
(Fig. 7).  
 

 
Fig. 7. Reconstructed 3D surfaces. 

Typically, when the point correspondences are defined in 
a pair of images, there is always some error in defining the 
match which might be related to, blurred images, local 
instead of global correspondence maximum, etc.  The 
residual error function can be defined as: 
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X and 'X represent the perfectly matched points, and d 

represents the distance between the measured point and the 
ideal perfectly matched point.  The image scale number is 
defined by the ratio of object distance h to the principal 
distance c (lens focal length with additional of an extension 
to achieve sharp focus) of the camera system used.  For our 
experimental set-up, we assume the object is 2 meters away 
from the camera, (h=2m), and the lens focal length is 50mm, 
(c=0.05m).  Thus we can calculate the image scale as m=h/c 
= 1/M = 40.  

The uncertainty of an image measurement dx’ can be 
transferred into object space by image scale number m: dX = 
mdx’. The quality of 3D surface reconstruction depends on 
the quality of images.  Fig. 8 shows the calculated residual 
error, which is the distance of the feature points to the 
perfectly matching points, for all the 3D points.  There are 
total of around 15k points generated.  It is shown that the 
mean error is around 0.3 of a pixel.  With each pixel of size 
about 4.7 µm, which is shown in table 1, the estimated 1δ 
accuracy of the 3D measurement will be about 0.05 mm. 

 
Fig. 8. Histogram of the residual errors. 

IV. DISCUSSION AND CONCLUSION 
In the current study, a CRDP system with high accuracy 

and low cost has been successfully developed. In the pilot 
test, the system was used to reconstruct the 3D surface of a 
positive plaster mould and has shown that the instrument 
performs measurements quickly with satisfactory accuracy.  
Unlike the commercial laser scanner, the key component of 
the developed system is a portable off-the-shelf, consumer 
grade digital camera which eliminates the need of data 
communication between scanner and computer. In addition, 
the system can be carried out at normal ambient light 
conditions using a flash light which makes it very suitable to 
be used in the clinic. In comparison with laser scanning, the 
major advantage of the system includes significantly lower 
cost (∼$700 USD), compact and easy–to-use hardware, 
satisfactory measurement accuracy (0.05mm), and 
significantly less measurement time (less than 1 min). 
Besides its potential applications in prosthetics and orthotics 
surface measurement the simple setup and its ease of use 
will make it suitable for various 3D surface reconstructions 
via a reverse engineering approach (e.g., clothes design and 
tool development etc.). The performance of the system will 
be compared to commercial scanners and further 
investigation is underway. 
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