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Abstract— Head motion during brain CT studies can degrade 

the reconstructed image by introducing distortion and loss of 

resolution, thereby contributing to misdiagnosis of diseases.   In 

this paper, we have proposed a correlation coefficient and Least 

Squares Support Vector Machines (LS-SVM) based approach to 

detect and mitigate motion artifacts in FDK based three-

dimensional cone-beam tomography. Motion is detected using 

correlation between adjacent x-ray projections. Artifacts, caused 

by motion,  are mitigated either by replacing motion corrupted 

projections with their counterpart 180o apart projections under 

certain conditions, or by estimating motion corrupted 

projections using LS-SVM based time series prediction. The 

method has been evaluated on 3D Shepp-Logan phantom. 

Simulation results validate our claims.  

Keywords- Three-dimensional CT, Motion Detection, Motion 

Artifacts, FDK, LS-SVM, Time series prediction.    

I. INTRODUCTION 

Patient head movement remains as one of the significant 

source of problems in most of the brain CT (computer 

tomography) applications. It is essential that the head being 

imaged remain still during x-ray data acquisition process. 

However, patient movement has frequently been reported in 

clinical applications. Even with substantial head restraint, 

some amount of head motion is likely to occur, especially in 

less cooperative patient like children[1]. Patient motion can 

adversely affect the reconstructed image through distortion 

and other artifacts such as blurring and doubling, thereby 

losing substantial information, which ultimately affects the 

diagnosis of diseases. Therefore, it is imperative to mitigate 

or to even eliminate motion artifacts for diagnostic purposes.  

Over the past few years several methods have been 

developed to detect and correct motion artifacts. Most of 

these techniques are based on using external sensors to detect 

and quantify head motion and then using motion parameters 

in the 3D reconstruction. Goldstein et al. [1] proposed a 

device uses a triad of three incandescent lights affixed on 

patient’s head while viewed by two position sensitive 

detectors. Fulton et al. and Beache et al. [2] also proposed 

similar approach that uses infrared reflector and detector.  On 

the other hand, several other approaches solely based on 

image data themselves, such as a motion correction method 

based on cross-correlation of summed horizontal and vertical 

sinogram of successive projection, a motion estimation based 

upon a parabolic fitting of the peak of correlation function of 

the sinogram/linograms of projections,  have been reported in 

the literature. It must be noted that motion detection using 

external sensor could cause systematic biases in the 

reconstructed images. Therefore, without using any extra 

sensor we propose an image data based approach to detect 

and mitigate motion artifacts. Unlike using only 

sinogram/linogram information of projection to detect motion 

and estimate correction, which often fail in case of substantial 

motion, we use the correlation-coefficient of adjacent x-ray 

projections to detect and locate motion. Once the place of the 

motion is detected, we either replace the motion corrupted 

projections by their corresponding 180
o
 apart counterparts 

projection or estimate projections using time series prediction 

to replace motion corrupted projection, depending on the 

location of the motion. The proposed method uses the 

OSCaR-02 [3] implementation steps for FDK based 3D 

reconstruction. In this paper, we have used modified form of 

X-ray projection equation of [2] to incorporate all possible 

motions, rotation and translation, of the 3D Sheep-Logan 

phantom. Simulation results verify the accuracy of our 

proposed method.  
 

II.    SIMULATIING  MOTION CORRUPTED  3D 

RECONSTRUCTION 

A three-dimensional version of the shepp-logan phantom is 

considered as the commonly used simulation model in 3D-

Computer Tomography (CT) imaging reconstruction field. In 

this paper the 3D Shepp-Logan model of Fig.1 is adopted for 

our simulations. The model consists of ten superimposed 

ellipsoids with different attenuation coefficients (CT values). 

The geometric locations, sizes and CT values of the ellipsoid 

used in the model are listed in Table 1[2].  CT value of water 

and air is 0 and -1000Hu respectively, while that of the bone 

varies from +100 to more than +1000. In our simulation, the 

CT values of the ellipsoids were choosen to smulate the soft 

tissue, bone and other matters located in the head. 
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Table 1 Parameters of 3D Shepp-Logan Model 

Center Coordinate 
(cm) 

Half axis (cm) 
Rotation 

angle 
CT 

Value 

xo yo zo a b c         
0 0 0 6.90 9.20 9.00 0 0 0 1000 

0 0 0 6.62 8.74 8.80 0 0 0 -800 

-2.2 0 -2.5 4.10 1.60 2.10 108 0 0 -200 

2.2 0 -2.5 3.10 1.10 2.20 72 0 0 -200 

0 3.5 -2.5 2.10 2.50 5.00 0 0 0 100 

0 1.0 -2.5 0.46 0.46 0.46 0 0 0 100 

-0.8 -6.5 -2.5 0.46 0.23 0.20 0 0 0 100 

0.6 -6.5 -2.5 0.46 0.23 0.20 90 0 0 100 

0.6 -1.05 6.25 0.56 0.40 1.00 90 0 0 100 

0 1.0 6.25 0.56 0.56 1.00 0 0 0 100 

 

The x-ray projection of an ellipsoid, E, is the length of the 
line segment going through E multiplied by the CT number (ρ) 
of that ellipsoid. According to the linearity of the radon 
transform, a projection of an object consisting of ellipsoids is 
just the sum of the projections of each individual ellipsoid. As 
listed in Table 1, the description of an ellipsoid, E, can be 
obtained by rotations, φ,        , about z, y and x axis 
respectively and translation from the origin to the (xo, yo, zo) 
position. 

In circular cone-beam CT system the source-detector pair is 
rotated in a circular orbit  about z-axis by angle β, where β 
varies from 0 to 360 degree with a suitable step size,  w.r.t. x-
axis and the ray integrals, projections,  are measured on the 
detector plane as shown in Figure 2. Using Parametric form of 
projection equation,  and  six motion parameters, we simulated 
several gradual motions during X-ray acquisition time. Three 
different types of motions (translational, rotational, and 
rotational & translational combined) applied to the 3D 
Phantom are listed in Tables 2, 3 and 4. 

 

 

                                              Figure 2 

The FDK algorithm is the most widely used algorithm for 
cone-beam volume reconstruction.  In practice, the cone-beam 
data acquired by the flat panel detector are row-wisely filtered 
with a suitable reconstruction filter and followed by a 3D back 
projection for volume reconstruction. In this paper, we adopt 
the OSCaR-02 [3] implementation for efficient FDK based 
cone-beam reconstruction. Some of the images of motion 
corrupted projections and the axial, coronal and sagittal slices 
of the reconstructed volume of these cases are plotted in 
Figures  3, 4 and 5. 

 

Table 2.  Translational motion given to the Phantom during 

scanning of  projections at 260o, 270o, and 280o 

Step Roll Pitch Yaw xo(cm) yo(cm) zo(cm) 

260 0
o 

0
o
 0

o
 0.4 0 0 

270 0
o
 0

o
 0

o
 0.6 0.6 0 

280 0
o
 0

o
 0

o
 0.8 0.8 0.8 

 

Table 3.  Rotational motion given to the Phantom during scanning of 

projections at 260o, 270o, and 280o 

Step Roll Pitch Yaw xo(cm) yo(cm) zo(cm) 

260 15
o 

0
o
 0

o
 0 0 0 

270 15
o
 30

o
 0

o
 0 0 0 

280 15
o
 30

o
 25

o
 0 0 0 

 

Table 4.  Combined Rotational and Translational motion given to 

the Phantom during scanning of projections at 160o, 180o, and 200o 

Step Roll Pitch Yaw xo(cm) yo(cm) zo(cm) 

160 15
o 

0
o
 0

o
 0.2 0.2 0.2 

180 15
o
 30

o
 0

o
 0.4 0.4 0.4 

200 15
o
 30

o
 25

o
 0.6 0.6 0.6 

 

  
  

  Figure 1. (a) A three-dimensional version of the 

Shepp-Logan head phantom. (b) Axial slices of the 

phantom at Z=-2.5cm and 6.25cm. (c) & (d) Sagittal 

and Coronal slices of the phantom at X=0 and Y=0 

positions respectively. 
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   Figure 3 (a-c) Projections at 260o, 270o and 280o source 

positions. (d-f) Axial, coronal and sagittal slices of the 
translational motion corrupted reconstructed volume. 

  

   

 

       

   
   

   Figure 4. (a-c) Projection at 260o, 270o and 280o source 

position.  (d-f) Axial, coronal and  sagittal slices of the rotational 
motion corrupted reconstructed volume. 

   

          

   
   

   Figure 5. (a-c) Projection at 160o, 180o and 200o source 

position. (d-f) Axial, coronal and sagittal slices of the 
translational and rotational motion corrupted reconstructed 
volume. 

III. MOTION DETECTION AND MITIGATION 

The idea behind our motion detection originated from the 
fact that the information content of two adjacent projections, 
which are taken 1

o
  apart source positions, are almost similar. 

So the value of the correlation-coefficient between adjacent 

projections will be very high. If the object under investigation 
suffers from any kind of motion, then the value of the 
correlation-coefficients of some of the adjacent projections 
will drop from the normal values depending upon the amount 
and position of the motion. Using the following Equation, we 
calculated the correlation-coefficients for motion free case, 
and the above three motion corrupted cases. Figure 6, the plots 
of correlation-coefficient (Cc) of these four different cases, 
validates our assumption.  

   
                    

             
               

   
 

Where,  

m, n are the pixel position. 

             and                 

   and    are the mean of A and B respectively 

 

From the above plots it is evident that the motion and the 
position of the source detector pair, where the motion occurs, 
can easily be identified by comparing the correlation-
coefficient values.  

Once motion corrupted projections are identified, they are 
replaced by their counterpart projections, which are 180 apart, 
to get rid of the motion artifacts in the reconstructed volume. 
Let us consider the rotational motion case first. It can be seen 
from Fig. 6(c) that the motion corruption occurs at source 
detector pair positions, β = 260

o
, 270

o
, and 280

o
 and starting 

from β = 1
o 

to 259
o 

positions the object under investigation 
remain stable. So, in order to remove motion artifacts from the 
reconstruction we need to replace the projections at β = 260

o
 to 

360
o
 positions with their counterpart projections at β = 80

o
 to 

180
o
 positions. But before we do that we need to flip over the 

information content of every projection of β = 80
o
 to 180

o
 

positions from left to right. After all the projections are aligned 
we applied the OScAR-02 implementation steps to reconstruct 
3D volume of the object. We applied the same technique for 
the other motion corrupted case.  In Fig. 7 shows the plots of 
axial, coronal and sagittal slices of reconstructed volume of 
rotational motion corrupted case. However, this method does 

 
 

  
      
      

   Figure 6. Correlation between adjacent projections.  (a) Without  motion.      

    (b) For translation motion. (c) For rotational motion (d) Combined rotational      

     and translational case.    
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not work if motions occur near β =180
o
. As for example, the 

combined translational and rotational motion case, in which 
motions occur at source positions 160

o
 to 200

o
 positions, i.e. in 

both half circles of the scanning position, then the 180
o
 apart 

projections of the projections near β =180
o
 position are not 

counterpart-  In that case, we need to estimate the motion 
corrupted projections near β =180

o
 positions. For our 

particular case we need to estimate the projections at β =160
o
 

to β =180
o
 positions to get artifacts free reconstruction. Of 

course, the quality of the reconstructed image will be 
dependent on how better we can estimate those motion 
corrupted projections. Here, we have used LS-SVM based 
time series prediction of every pixels of the motion corrupted 
projections from the pixels of previous projections at β =1

o
 to 

β =159
o
 positions. 

   

      
   

   Figure 7. (a-c) Axial, coronal and sagittal slices of the 

rotational motion corrupted case. (d-f) same slices after motion 
compensation. 

 

IV.  PREDICTION APPROACH 

We want to predict the sequence of future pixel values     
    

from given time series of pixels   
 . A training data set is 

created using a sliding window of length p+h. Each instances 

of the sliding window corresponds to a record in the training 

set. For example, the first record of the training set contains 

               as its input variables and   

                   as its output variables. Similarly, the 

second record contains                   as its input 

variable and                        as its output 

variables, while the last record contains 

                              as its input variables and  

                       as its output variables. The size 

of the prediction window h is domain dependent and depends 

on the nature of the application. Akike’s final prediction error 

[4] has been used for determining the order of p. For our 

particular case we used h=100 and p =12. We first predict xt+1 

using the previous p values, xt+1-P,..., xt-1, xt. we then predict 

xt+2 based on its previous p values, which includes the 

predicted values for xt+1. The procedure is repeated until the 

last value, xt+h , has been estimated.  Figure 8.  shows  the two 

intensity profiles of pixels at position (100, 125) for original  

and predicted projections at β =161
o
 to β =260

o
 positions. 

From the figure it is evident that our LS-SVM predictor does 

a very good work for the first 40 values. It gives us the 

primary indication of how many projections can be estimated 

within acceptable range of error. Fig. 9 shows two axial slices 

of the reconstructed volume of above motion corrupted case 

and estimated projection case.   
 

 

Figure 8. Intensity profile of pixels at (100,125) position. 
 

 
 

Figure 9. Axial slices of reconstructed volume of motion corrupted 

case and estimated projection case. 

V.    CONCLUSION 

We have designed and implemented a correlation and SL-
SVM based technique to detect and compensate motion 
artifacts in FDK based three-dimensional computer 
tomography. Simulation results validate our claims for motion 
detection and artifacts mitigation. In our future research, 
efforts will be made to improve the performance of the 
estimator, and apply our method to real life data set.  
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