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Abstract— Segmenting cerebral blood vessels is of great
importance in diagnostic and clinical applications, especially
in quantitative diagnostics and surgery on aneurysms and
arteriovenous malformations (AVM). Segmentation of CT an-
giography images requires algorithms robust to high intensity
noise, while being able to segment low-contrast vessels. Because
of this, most of the existing methods require user intervention.
In this work we propose an automatic algorithm for efficient
segmentation of 3-D CT angiography images of cerebral blood
vessels. Our method is robust to high intensity noise and is
able to accurately segment blood vessels with high range of
luminance values, as well as low-contrast vessels.

I. INTRODUCTION

The structure and position of blood vessels is of great im-
portance for surgical and diagnostic purposes, and therefore
presents a well researched field. Special attention is given
to the determination of the position and access points of
cerebral aneurysms and arteriovenous malformations (AVM).
It is of utmost importance for surgery to precisely determine
the exact positions of vessels going in and out of the
malformation, as well as their radii, bending angles and
entering directions. For this purpose it is essential to have
a good segmentation algorithm capable of segmenting the
blood vessels approaching the sub-pixel dimensions. It is
also important to implement a fast segmentation algorithm
in order for it to applicable during surgery when needed.

The current reviews on vessels extraction techniques [3],
[4], [5] show that most techniques used in clinical purposes
today are semi-automatic, often extensively relying on user
interaction. A significant number of studies exist concern-
ing the visualization of brain blood vessels and cerebral
aneurysms and malformations [7], where most of them incor-
porate problem specific geometric models [6] which might
have a problem with high vessel intensity range, as well
as segmenting the inner structure of the aneurysms because
of its highly unpredictable shape. Shape and flow driven
methods [8] can also have these problems. Mathematical
morphology techniques [1], [2] are also widely used for the
segmentation of medical images, but they also usually require
user intervention and are not able to cope with the wide range
of blood vessel pixel intensities.
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In this paper we propose a segmentation algorithm which
is an extension of our previous work [9]. The idea in
our work is to measure the extent to which parameters of
interest in the neighborhood with certain shape and size
of a central pixel relate to the current (central) pixel. The
use of circle and square shaped neighborhoods proved to
be good for segmenting low resolution images, but can be
computationally intensive. We solve this problem by using
projections as neighborhoods of the current pixel, which are
calculated much faster due to their linear shape. This method
is applicable for segmenting both large data sets of blood
vessels and also gives satisfactory results in representing the
structure of malformations.

II. THE PROPOSED METHOD

We design our method for the purpose of segmenting CT
angiography images of brain blood vessels, although the
method is applicable to other segmentation problems. The
advantage of this imaging modality is that only the blood
vessel structures are visible, which means that the segmented
image will have only two labels, one for the blood vessels
and another for the background. The disadvantage is that
the blood vessel structures have wide range of gray scale
values (from 25 to 255 out of 256 gray scale values), which
makes the use of simple threshold techniques inapplicable in
the presence of high intensity noise, as found in the images.
For this reason we base our method on the combination of
pixel neighborhood structure and intensities of the object
intended for segmentation, as described in [9], where the
circular and square-shaped neighborhoods were used. The
segmentation was based on examining the average values
at different neighborhood size and their comparison to the
current pixel value. Although this method yields good results
in segmentation of objects with low resolution, it is not
suited for segmenting large scale images because of its high
computation times.

The novelty we propose here is defining neighborhoods
as projections (lines passing through the currently processed
pixel, but excluding the currently processed pixel) and exam-
ining the characteristic function based on the combination of
following elementary functions: minimum (min), maximum
(max), average (avr) and mid-range (mdr, defined as the
average of the minimum and maximum value). We compare
neighborhood characteristic function values to the value of
the currently processed pixel, but instead of varying the
neighborhood size, we vary the direction of the projection
based on the predefined angle value. The new value of the
pixel is equal to the number of projections for which the
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characteristic function has a value lower than the value of
the current pixel. We segment the image by thresholding
the obtained transformed image, preferably by setting the
threshold value to the number of existing projections, which
is the maximum possible value.

Let p ∈ Z2 denote the pixel of image I in the discrete
Cartesian grid with a value f(p) from a range of discrete
gray scale values f(p) ∈ [fmin, ..., fmax]. For a given point
p of the image I , with coordinates (xp, yp) we define the
projection at the angle α ∈ (0, 180] as in (1).

Pα(p) : {q ∈ I, q 6= p | yq = kxq + (yp − kxp)} , (1)

where k = tanα is a function of the projection angle.
From the definition in (1) it is obvious that the projection
at a given angle α is equal to the line at the same angle,
but excluding the currently processed pixel. For this set we
define the segmentation function s as a combination of basic
functions on the set Pα(p), as in (2):

s(Pα(p)) =
1

N

N∑
i=1

bi(Pα(p)), (2)

where bi denotes a function from a set of basic func-
tions: minimum, maximum, average and mid-range func-
tions. These functions have been chosen for the reason of fast
computations, because their values can be easily updated at
each step while advancing pixel by pixel through the image.
This is because they do not require additional memory space
and its sorting, which would increase the computation time
as in the case of median value calculation.

In (3) we define the projection set Sn(p) containing n
number of projections of point p with applied segmentation
function s:

Sn(p) =
{
s(Pi 180n

(p)), i = {1, ..., n}
}

(3)

A projection set is illustrated in Fig. 1(b) for a single point
of the original image in Fig. 1(a). We assign in (4) the
new pixel value d(p) as the number of projections contained
in the projection set Sn(p) of the pixel p for which the
segmentation function value does not exceed the value of
the pixel p:

dn(p) = card(S′
n(p)), (4)

where the S′
n(p) represents the set of calculated segmenta-

tion function values which do not exceed the value of the
processed pixel, as defined in (5):

S′
n(p) = {s(Pα(p)) ∈ Sn(p), s(Pα(p)) < f(p)}. (5)

A. Selecting the threshold value

In order to segment the image, we need to apply thresh-
olding to the obtained transformed image. For the sake of
keeping the method automatic, we set the threshold value
to maximum value n, which means that only those pixels
remain which are segmented for all projection directions.
According to this, the threshold function is given in (6):

Ln(p) =

{
1, dn(p) = n
0, dn(p) < n

(6)

(a) (b) (c)

(d) (e) (f)

Fig. 1: Original image in (a), illustration of the projection set
Sn(p) in (b) and segmentation of the original image using
two projections for the following basic functions: minimum
(min) in (c), maximum (max) in (d), average (avr) in (e)
and mid-range (mdr) in (f).

Because of using the largest possible threshold value, it is
essential to correctly choose the segmentation function in
order for all the objects in the image to get segmented.

B. Segmentation function selection

The segmentation function s has to be chosen so that
it minimizes the number of projections needed for the
segmentation of the image, but preserves all the important
parts of the object for segmentation while eliminating noise
in the image. A segmentation example using basic functions
s = bi with two projections n = 2 is shown in Fig. 1. The
results illustrated in Fig. 1 show that neither of the basic
functions fulfills the requirements needed for the optimal
segmentation. The minimum function shown in Fig. 1(c)
segments a too large region, the maximum function in Fig.
1(d) segments too few pixels, the average function in Fig.
1(e) preserves details, but segments also too much noise and
the mid-range function in Fig. 1(f) eliminates noise, but also
removes some of the regions which should be segmented. For
this reason, we examine a variety of segmentation functions
obtained by combining the basic functions as defined in (2).
Our examination shows that the best function for the purpose
of segmenting our 3-D data sets is s = (mdr+avr+max)/3,
because it proved to remove the most of the noise while
preserving all the relevant objects in the image. The function
can be easily chosen by testing the segmentation on a single
slice of the hole 3-D data set.

C. Setting the number of projections

It is obvious that the transformation and segmentation
results will depend on the number of projection directions. In
the case of images with high pixel and inter-slice resolution
and acceptable level of noise and artifacts, the number of
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Fig. 2: Four projections are enough for separation of the
current pixel from its neighborhood as shown in (a), the
number of projections to cover all image is defined by the
inscribed circle of the largest object and the distance d of the
corners to the center bottom position of the circle as shown
in (b).

projections can be set to its minimum value if the segmen-
tation function is able to distinct between the object and
the background without merging any segmented noise to the
object. In this case, we need only four projections to get
object distinction, since all the surrounding pixels in the eight
neighborhood of the current pixel will be involved in these
projections, as shown in Fig. 2(a). Although this method
results in segmentation of large quantity of noise, all the
surrounding pixels of the object are involved in projection
calculation, which results in clear distinction between seg-
mented object and noise.

In order for all the noise to be eliminated in the segmen-
tation process, there must be a projection containing at least
one object pixel for every pixel in the image. Because of this,
the number of projections depends on the shape and size of
the object for segmentation, as well as number of objects
in the image. For simplicity reasons, we will approximately
determine the number of projections corresponding to the
largest inscribed circle of the largest object with the radius
r for segmentation because it covers the same width of
projection for each angle, which is not the case for other
object shapes. We assume the position of the object which
results in the largest number of directions, which happens
when the object is centered at the shorter side of the image, as
shown in Fig. 2(b). We take into account the largest distance
d from this position, which is in the opposite corners of the
image and according to it we determine the angle between
the circle objects β, as in (7):

β = 2arcsin (
r

d
). (7)

According to this, we determine the number of projections

(a) (b) (c)

(d) (e) (f)

Fig. 3: Original images are in (a) and (d), corresponding
transformed images with visible object and noise segments
are in (b) and (e) and corresponding segmentation by extrap-
olation of the largest region is in (c) and (f).

n as in (8):

n =

⌈
π

β

⌉
, (8)

where the devision result is rounded to the first greater value.
Since the segmentation function is well chosen, the number
of projections can be a value somewhat larger than four and
constant for all slices of the 3-D set. In this work we set
the number of projections to n = 16, which is enough to
include in the calculation neighboring pixels of an object
within the radius of five pixels with all the listed problems.
The results of transformation with listed parameters for the
original images in Fig. 3(a) and Fig. 3(d) are shown in
Fig. 3(b) and Fig. 3(e), respectively. The transformed image
in Fig. 3(e) has a lot of segmented noise because of the
small object area present in the original image, but the noise
segments are situated further away from the object segments
because of sufficient number of projections. On the other
hand, the transformed image in Fig. 3(b) has a significantly
larger object area and because of that noise segments are less
present.

D. Algorithm for 3-D segmentation

A 3-D segmentation algorithm can be realized by ex-
tending a 2-D version of the proposed method to the 3-D
space, but the method would be computationally demanding
for large data sets, which would significantly prolong the
execution time. Therefore, we use the proposed 2-D algo-
rithm for the segmentation of the 3-D set with constant
number of projections and fixed one segmentation function
for the whole 3-D set. After the image transformation, a
binary image is obtained containing both segmented object
and segmented noise as presented in Fig. 3(b) and Fig. 3(e),
but the two of these do not merge at any point. We extract
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(a) (b)

(c) (d)

Fig. 4: Results of blood vessel segmentation obtained by: (a)
connected components method, (b) morphological profiles
and (c), (d) our proposed method. The results clearly show
that our proposed method segments the most blood vessels
of all the methods, with the aneurysm clearly visible in the
middle of the blood vessel tree structure.

the object by finding the largest 3-D region in the image and
discarding all the smaller regions, as shown in Fig. 3(c) and
Fig. 3(f) for the transformed images in Fig. 3(b) and Fig.
3(e), respectively. From the obtained images we can see that
no noise segments are present in the final segmentation.

III. RESULTS

We tested our algorithm on six data sets of CT an-
giography images of brain blood vessels, using constant
number of projections n = 16 and the segmentation function
s = (mdr + avr + max)/3. We compare our method to
connected components method [10], which is a method based
on adaptive threshold setting and classical morphological
profiles [11], where the segmentation is obtained by vary-
ing the size of given structuring element. For comparison
reasons, we use the artificial phantom spiral model shown
in Fig. 5a with added CT artifacts and noise. The connected
components method (see Fig. 4a) segments more branches
than the morphological profiles (see Fig. 4b), while our
presented method segments the most of the blood vessel tree
structure (see Fig. 4c) and phantom model (see Fig. 5).

The results presented in Fig. 4c and Fig. 4d show that
the blood vessels were accurately segmented with clearly
visible arterious and venous structures with the aneurysm in
the center of the blood vessel tree.

(a) (b) (c) (d)

Fig. 5: Comparison of different techniques on the groundtruth
3-D image in (a). Both the MP method (b) and connected
components (b) segment either smaller part of the spiral or
introduce more noise to segmentation than our method in
(d).

IV. CONCLUSION

We introduced a novel segmentation method based on
projections for both 2-D and 3-D images with an application
to segmentation of CT angiography images of brain blood
vessels. We have explained the choice of the segmentation
function and the determination of number of projections.
Once these parameters are fixed, the algorithm works com-
pletely automatically. Our choice of basic segmentation func-
tions used to generate the combined segmentation function
significantly decreases computation time making it efficient
for use on large 3-D data sets. Our method stands out in
cases of segmentation of objects with high range luminance
values, as well as in images with high noise values which
often occurs in CT images. Obtained segmentation results
show exact blood vessel tree structure and the best segmented
phantom model of all the comparison methods.
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