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Abstract— Segmentation of positron emission tomography
(PET) images is an important objective because accurate
measurement of signal from radio-tracer activity in a region
of interest is critical for disease treatment and diagnosis. In
this study, we present the use of a graph based method
for providing robust, accurate, and reliable segmentation of
functional volumes on PET images from standardized uptake
values (SUVs). We validated the success of the segmentation
method on different PET phantoms including ground truth
CT simulation, and compared it to two well-known threshold
based segmentation methods. Furthermore, we assessed intra-
and inter-observer variation in delineation accuracy as well
as reproducibility of delineations using real clinical data.
Experimental results indicate that the presented segmentation
method is superior to the commonly used threshold based
methods in terms of accuracy, robustness, repeatability, and
computational efficiency.

I. INTRODUCTION

18F-FDG PET functional imaging is a widely used modal-

ity for diagnosis, stating, and assessing response to treatment.

The visual and quantitative measurements of radio-tracer

activity in a given ROI is a critical step for assessing the

presence and severity of disease. Overlap or close juxtaposi-

tion of abnormal signal with surrounding normal structures

and background radio-tracer activity can limit the accuracy

of these measurements, therefore necessitating the develop-

ment of improved segmentation methods. Accurate activity

concentration recovery, shape, and volume determination are

crucial for this diagnostic process. PET segmentation can

be challenging in comparison to CT because of the lower

resolution which can obscure the margins of organs and

disease foci. Moreover, image processing and smoothing

filters commonly utilized in PET images to decrease noise

can further decrease resolution.

Most of the studies regarding delineation of PET images

are based on manual segmentation, fixed threshold, adaptive

threshold, iterative threshold based methods, or region-based

methods such as fuzzy c-means (FCM), region growing,

or watershed segmentation [1], [2], [3], [4], [5]. Although

these advanced image segmentation algorithms for PET

images have been proposed and shown to be useful upto
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certain point in clinics, the physical accuracy, robustness,

and reproducibility of delineations by those methods have not

been fully studied and discovered. In this study, we present

an interactive (i.e., semi-automated) image segmentation ap-

proach for PET images based on random walks on graphs [6],

[7]. The presented algorithm segments PET images from

standardized update values efficiently in pseudo-3D, and

it is robust not only to noise, but also to patient and

scanner dependent textural variability, and has consistent

reproducibility. Although the presented method can be easily

extended into a fully automated algorithm, interactive use

of the method offers users the flexibility of choosing the

slice and region of interest so that only the selected slices

and region of interests in those slices are segmented. In the

following section, we describe the basic theory behind the

random walk image segmentation and its use in segmenting

PET images using SUVs. Then, we give the experimental

results on segmentation of PET images.

II. GRAPH-BASED METHODS FOR IMAGE

SEGMENTATION

The “Graph-based” approaches [9], as alternatives to

the boundary based methods, offer manual recognition, in

which foreground and background or objects are specified

through user-interactions. User-placed seed-points offer a

good recognition accuracy especially in the 2D case. Graph-

cut (GC) has been shown to be a very useful tool to

locate object boundaries in images optimally. It provides a

convenient way to encode simple local segmentation cues,

and a set of powerful computational mechanisms to extract

global segmentation from these simple local (pairwise) pixel

similarity [9]. Using just a few simple grouping cues, called

seed points and serve as segmentation hard constraints, one

can produce globally optimal segmentations with respect to

pre-defined optimization criterion. A major converging point

behind this development is the use of graph based technique.

In other words, GC represents space elements (spels for

short) of an image as a graph with its nodes as spels and

edges defining spel adjacency with cost values assigned to

edges, and to partition the nodes in the graph into two disjoint

subsets representing the object and background. This is done

by trying to find the minimum cost/energy among all possible

cut scenarios in the graph where GC optimizes discrete ener-

gies combining boundary regularization with regularization

of regional properties of segments [9]. A common problem

in GC segmentation is the “small cut” behaviours, happening

in noisy images, or images including weak edges. This be-

haviour may produce unexpected segmentation results along

the weak boundaries. Since PET images are poor in terms
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of resolution, and since weak boundaries often exist in PET

images, we propose to use random walk (RW) segmentation

method for segmentation of PET images to provide globally

optimum delineations. By using RW segmentation method,

we also often avoid “small cut” behaviours because weak

object boundaries can be found by RW segmentation method

as long as they are part of a consistent boundary. Due to

the properties of providing globally optimum delineations

and being less susceptible to the “small cut” behaviours, we

propose to use RW segmentation method in delineating PET

images.

A. Random Walks for Image Segmentation

Among graph-based image segmentation methods, RW

segmentation has been shown very useful in interactive im-

age delineation. It appeared in computer vision applications

in [8], and then extended for image segmentation in [6], [7].

In this section, we describe the basic theory of RW image

segmentation and its use in segmentation of PET images

from SUVs.

Suppose G = (V,E) is a weighted undirected graph with

vertices v∈V and edges e∈ E⊆VxV . Let an edge spanning

two vertices, vi and vj, be denoted eij, and weight of an edge

is defined as wij. As common to graph-based approaches,

edge weights are defined as a function, which maps a change

in image intensity to edge weights. In particular, we use

un-normalized Gaussian weighting function to define edge

weights as: wij = exp(−(gi − gj)
2), where gi represents

the SUV of pixel i. Assuming that the image corresponds

to a lattice where SUV of each pixel is mapped to edge

weights in the lattice such that some of the nodes of the

lattice are known (i.e., fixed, labelled), VM, by user input

(i.e., seeds, marks), and some are not known, VU, such that

VM∪VU = V and VM∩VU = /0. The segmentation problem

in this case is basically to find the labels of unseeded (not

fixed) nodes. A combinatorial formulation of this situation is

nothing but the Dirichlet integral, as stated previously in [6],

D[x] =
1

2
(Ax)TC(Ax) =

1

2
xTLx=

1

2 ∑
eij∈E

wij(xi−xj)
2,

(1)

where C is the diagonal matrix with the weights of each edge

along the diagonal, and A and L(= ATCA) are incidence

and Laplacian matrices indicating combinatorial gradients in

some sense, and defined as follows:

Aeijvk =







1 if i= k

−1 if j= k

0 otherwise.

(2)

Solution of the combinatorial Dirichlet problem may be

determined by finding the critical points of the system.

Differentiating D[x] with respect to x, and solving the system

of linear equations with |VU| unknowns yield a set of labels

for unseeded nodes if every connected component of the

graph contains a seed (See [6] for non-singularity criteria).

In other words, RW efficiently and quickly determines the

highest probabilities for assigning labels to the pixels by

measuring the “betweenness” through starting pixel of the

(a) (b) (c)

Fig. 1. (a) different anatomical positions, (b) seeded object (blue) and
background (red), (c) delineation results by RW segmentation method.

RW (labeled pixel) to the un-labeled pixel, reached first by

the random walker.

III. EVALUATIONS AND RESULTS

We performed a retrospective study involving 20 patients

with PET-CT scans. PET scans’ resolution is limited to

4mm x 4mm x 4mm. The patients are having diffusive lung

parenchymal disease abnormality patterns including ground

glass opacities, consolidations, nodules, tree-in-bud patterns,

lung tumours and non-specific lung lesions. PET scans are

having more than 200 slices per patient with in-plane resolu-

tion varying from 144 x 144 to 150 x 150 pixels with 4mm

pixel size. The average of the time for delineating one slice

by the RW segmentation method was around 0.1 seconds.

We qualitatively and quantitatively demonstrated the success

of the presented delineation method both on phantom and

real clinical data. We also compared the RW segmentation to

the threshold based methods: fuzzy locally adaptive bayesian

(FLAB) and FCM clustering [1]. Comparative results are

explained in the following subsections.

Figure 1 shows the performance of the presented RW

segmentation method qualitatively. Each row of Figure 1

shows steps of the RW segmentation on PET images for

different anatomical location such that: (a) PET images for

different anatomical locations, (b) seed locations (blue for

object, red for background), (c) segmented object regions.

A. Reproducibility

Repeatability, or reproducibility in other words, is vital

for many computational platform including segmentation of

images. Particularly in seed based segmentation, it is of

interest to know the effects of locating the user defined seeds

on images for segmentation. Figure 2 shows an example
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TABLE I

STUDY OF RW SEGMENTATION REPRODUCIBILITY VIA DICE

SIMILARITY SCORES.

Mean Std Max Min

Dice Scores 99.0077% 0.6865% 99.6346% 97.2189%

Fig. 2. Study of RW segmentation reproducibilty by locating seeds in
different regions of object and background.

segmentation of PET images examining the sensitivity of

the RW segmentation to the user defined seeds. Not only the

number of background and foreground seeds were changed

in each case, but also their locations were changed while

the consistency between separation of object and foreground

was still kept. Apart from this qualitative evaluations, we

also computed quantitative scores of the correlation between

segmentation results via dice similarity scores. For each

segmented volume Vs and a reference segmentation Vr, the

dice similarity score is calculated as

D(Vr,Vs) =
2|Vr∩Vs|

|Vr|+ |Vs|
100%. (3)

From each of 20 patients, we selected slices with high

uptake regions (i.e., regions are either small or large de-

pending on the abnormality: nodule, non-specific lesion,

consolidation, TIB, and etc.), and for each slice we repeated

the segmentation experiments 10 times by putting the seeds

randomly over the image regions while keeping the seeds

belonging to object and foreground. Resultant dice similarity

scores for each segmentation experiment was compared after

taking the mean over all pairs for the same patients, and

eventually for all patients. The mean, standard deviation

(std), max, and min scores are reported in Table I. Note

that the presented segmentation method has a variation in

segmented accuracy <1%. (See [11] for a full sensitivity

analysis of segmentation to the number of seeds).

B. Validation by Ground Truth

We validated the presented segmentation algorithm via

IEC image quality phantom [10], containing six different

spherical lesions of 10, 13, 17, 22, 28 and 37 mm in diameter

(See Figure 3). Two different signal to background ratios

(i.e., 4:1 and 8:1), and two different voxel sizes (i.e., 2x2x2

and 4x4x4 mm3) were considered [1] as reconstruction

parameters. Figure 3 (a-d) show phantoms with different re-

construction parameters, and Figure 3(e) shows ground truth,

simulated from CT. Segmented objects from the phantoms

are shown in the last row of Figure 3. Resultant segmentation

variations due to the use of different reconstruction param-

eters (i.e., signal to background ratios and voxel size) are

reported in Figure 4. As expected, low resolution and signal

Fig. 4. Segmentation accuracy of phantoms with respect to the ground truth
(Figure 3.e) is shown. Dice scores are listed as 92.7±2.99%, 96.7±3.18%,
88.9±2.62%, and 83.6±2.68%, for phantoms given in Figure 3 (a), (b), (c),
and (d), respectively.

Fig. 5. Intra-observer variation study: delineation of the high uptake region
by the same expert in three different time points is reported.

to background ratios degrade the delineation performance.

Note also that the variations were computed with respect to

the ground truth simulated CT scan.

C. Intra-and Inter-observer Variations

Manual segmentations were performed by three expert

radiologists, and the experiments were repeated three times in

order to assess intra- and inter observer variations over seg-

mentation accuracies. The inter-observer and intra-observer

variations are reported as 22.27±6.49% and 10.14±4.23%,

respectively. Intra-observer variations (i.e., delineation by the

same expert in different time points) on a sample scan is

illustrated in Figure 5. Even though the window level is fixed

for each segmentation experiment for the same anatomical

location of the same patient, an average of 10% variation

was inevitable on average.

(a) (b) (c)

Fig. 6. Delineation by FCM (a), FLAB (b), and RW (c).
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Fig. 3. First row shows phantom images with following properties: (a) ratio 4:1, 64mm3, (b) ratio 8:1, 64mm3, (c)ratio 8:1, 8mm3, (d) ratio 4:1,
8mm3, (e) CT acquistion-ground truth. Second row shows user labeling, and the third row shows RW segmentation results.

D. Comparison to Threshold-based methods

Figure 6 shows the delineations of the same anatomical

regions with FCM, FLAB, and RW segmentation algorithms.

Note that in FCM and FLAB, there is a need to define

region of interest to exclude false positives as a further

refinement of the segmentation. On average, dice similar-

ity index between RW and FCM and between RW and

FLAB are reported as: D(RW,FCM) = 87.31± 5.16% and

D(RW,FLAB) = 92.1688±4.16%, respectively. In addition,

segmentation results by the methods FLAB and FCM on the

phantom sets show that (1) FLAB performs better than FCM

as agreed with [1], (2) reproducibility of the segmentation

algorithm is not comparable to the RW segmentation algo-

rithm: FLAB has reproducibility variation of <4% whereas

RW has variation of <1%, (3) accuracy of the delineations

in RW segmentation are superior to FLAB and FCM: in the

most favourable phantom in terms of image quality, FCM

and FLAB have average delineation errors of 5-15% and

15-20%, respectively, for objects larger than >2cm, whereas

RW algorithm has an average delineation error of 3.3-16.4%

without any restriction in object size, and less than 10% if

only objects >2cm are considered. As reported in [1], FCM

and FLAB have problems in segmentation of small regions

with high uptake, and often failed to segment lesions <2cm,

and produce false positives. However, on the other hand, our

presented framework successfully segment all regions with

great accuracy, and manual removal of any false positive

regions are avoided by the user defined object-foreground

separation prior to beginning of delineation.

IV. CONCLUSION

In this study, we presented a fast, robust, and accurate

graph based segmentation method for PET images using

SUVs. We qualitatively and quantitatively evaluated the RW

image segmentation method both in phantom and real clinical

data. We also compared the presented RW segmentation

algorithm with two well-known and commonly used PET

segmentation methods: FLAB and FCM. We conclude from

the experimental results that interactive RW segmentation

method is a useful tool for segmentation of PET images with

high reproducibility.
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