
  

  

Abstract— A robust lesion segmentation method is critical for 

quantification of lesion activity in positron emission 

tomography (PET), especially for the cases where lesion 

boundary is not discernible in the corresponding computed 

tomography (CT). However, lesion delineation in PET is a 

challenging task, especially for small lesions, due to the low 

intrinsic resolution, image noise and partial volume effect. The 

combinations of different reconstruction methods and post-

reconstruction smoothing on PET images also affect the 

segmentation result significantly which has always been 

overlooked. Therefore, the aim of this study was to investigate 

the impact of different reconstruction methods on semi-

automated small lesion segmentation for PET images. Four 

conventional segmentation methods were evaluated including 

region growing technique based on maximum intensity 

(RGmax) and mean intensity (RGmean) thresholds, Fuzzy c-

mean (FCM) and watershed (WS) technique. All these methods 

were evaluated on a physical phantom scan which was 

reconstructed with Ordered Subset Expectation Maximization 

(OSEM) with Gaussian post-smoothing and Maximum a 

Posteriori (MAP) with quadratic prior respectively. The results 

demonstrate that: 1) the performance of all the segmentation 

methods subject to the smoothness constraint applied on the 

reconstructed images; 2) FCM method applied on MAP 

reconstructed images yielded overall superior performance than 

other evaluated combinations. 

I. INTRODUCTION 

UMOR segmentation in positron emission tomography 

(PET) plays an important role in oncology diagnosis, 

therapy planning and disease monitoring. However, defining 

an accurate boundary for lesions in PET is a challenging task 

due to the low intrinsic resolution, noise corruption and 

partial volume effect. This situation is even more challenging 

for small lesions which very often do not have matched 

boundaries in the co-registered anatomical images, such as 

computed tomography (CT).  
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Currently, the most commonly used method is based on a 

thresholding approach that can be implemented using a 

region growing technique. The threshold values are usually 

obtained by setting a certain percentage of the maximum 

intensity [1], or can also be obtained iteratively based on the 

mean intensity of the initial lesion region [2]. Other lesion 

segmentation methods include gradient-based approaches 

such as watershed technique [3] and statistical approaches 

such as Fuzzy c-means (FCM) clustering [4]. 

Although some studies have compared different 

segmentation approaches [5-7], no segmentation methods 

have been demonstrated to yield robust and consistent 

performance on PET. Most of these algorithms are system 

specific and their application to different system settings can 

result in significantly different segmented volumes [5]. 

Therefore, the variability of reconstruction methods and 

post-smoothing filters on PET images may affect the 

performance of the segmentation methods.  

In this paper, we investigate the effect of different 

reconstruction methods and post-reconstruction smoothing 

on the lesion segmentation for PET images. We focus on 

small lesion especially as it is more susceptible to the partial 

volume effect and its segmentation results were often 

disappointing [6-8].  

II. MATERIALS AND METHODS 

A. Phantom Datasets 

The methods were evaluated using a physical torso 

phantom (Anthropomorphic Torso phantom, Data 

Spectrum Inc, Hillsborough NC) study (Fig 1a). CT and 

fluorodeoxyglucose (
18

FDG) PET scans of the torso phantom 

were acquired on a Siemens Biograph Truepoint PET/CT 

scanner (Siemens Healthcare Molecular Imaging, Knoxville 

TN). The fillable volumes of the phantom and the lung 

inserts, which contained Styrofoam beads, were 10L and 

0.7L, respectively. Three 4.5mL plastic tubes approximately 

10 mm in diameter and 50 mm in length were placed in 

locations corresponding to the lesions in the computer 

simulation. The phantom contained a total of 213 MBq of 
18

FDG. The 
18

FDG concentrations in the lesions and lung 

tissue were 4 and 0.5 times the soft tissue concentration, 

respectively. Note the lesions residing in the soft tissue 

region were not detected in the CT image (Fig. 1(c)), where 

only lesion 1 can be observed in the lung region. To reveal 

the true lesion locations, the 10th plane of the physical 
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phantom is shown in Fig 1(b) where the caps of the tubes 

used to simulate lesions can be observed. The emission data 

were acquired for 4 minutes. The sinograms comprised 168 

radial samples and 168 angular samples. For the PET scan, 

the true and random event rates were approximately 480 

kcps and 175 kcps, respectively. The acquired sinograms 

were normalized, corrected for attenuation and scatter, and 

rebinned into 2D parallel projections using Fourier 

rebinning. 
 

     

                              
 

Fig. 1.  (a) The Anthropomorphic Torso PhantomTM; (b) The 10th plane 

is shown here to reveal the exact lesion locations. The caps of the 

containers that were used to simulate lesions are shown in this image. 

(c) The 26th slice of the CT image of the physical phantom; (d) The 

corresponding PET image reconstructed with OSEM at 25 iterations and 

4 level of subsets; (e) Three volumes of interest denoted by red square 

for lesion 1, green square for lesion 2 and magenta square for lesion 3 

drawn on a post-smoothed image (inverse gray scale). 
 

Two reconstruction algorithms were evaluated, the Ordered 

Subset Expectation Maximization (OSEM) approach with 25 

iterations and 4 subsets [9]-[10] and Maximum A Posteriori 

(MAP) [11] with quadratic prior. All the images 

reconstructed with OSEM were post-filtered with a 3D 

Gaussian filter to suppress noise.  

B. Segmentation Methods 

We applied four segmentation methods, denoted RGmax, 

RGmean, FCM and WS to a manually defined volume of 

interest that covers each lesion and provides sufficient 

background voxels (Fig. 1(e)). We optimized the parameters 

used in each approach to reduce bias caused by the 

parameter settings. 

RGmax is a threshold approach with the threshold value T 

calculated based on a fixed percentage α of the maximum 

activity Imax within the lesion: 

maxIT ×=α
 (1)

 

We implemented this threshold approach using a region 

growing technique with a seed point located within the 

lesion. We optimized the fixed percentage value α using a 

leave-one-out procedure as in [7]. 

RGmean is an adaptive threshold approach which relies 

only on the mean intensity of the lesion [2]. The threshold 

value is obtained iteratively using: 

( ) γβ +×= −1nn ThMTh
 (2)

 

where nTh  is the threshold value at iteration n, and 

( )1−nThM  is the mean activity value of the lesion volume 

obtained with threshold 1−nTh . We optimized the parameters 

β and γ by using regression analysis and reproducing the 

experiments in [2]. 

FCM is a Fuzzy c-means clustering method which is 

based on the minimization of an objective function O: 

∑ ∑
= =

−=
D

i

C

j
ji

n
cxmO

ij1 1

 (3) 

where mij is the degree of membership of data xi in a cluster 

j, n is usually set as 2, cj is the center of cluster j, D is the 

number of data to be clustered and C is the number of 

clusters. In our implementation, we optimized the number of 

clusters by maximizing the Bayesian Information Criterion 

(BIC) [12]: 
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where k is the number of cluster, Σi is the covariance matrix 

of the samples in cluster c with ni number of samples, P is 

the number of parameters of each cluster and N is the total 

number of samples to be clustered. BIC has been used to 

optimize the number of clusters for PET segmentation in 

[13]. 

WS is a watershed technique which regards the intensity 

of an image as the height of the topology. It is usually 

applied on an image gradient such that the homogeneous 

regions have similar height, separated by the higher gradient 

magnitude set as the watershed. We used marker-based 

watershed to avoid over-segmentation usually found in 

watershed approach. In our implementation, we used the 

gradient magnitude of the PET image and located a marker 

inside a lesion (maximum intensity) and another marker in 

the background region (minimum intensity) and grew a 

region for each marker. The lesion boundary was then 

formed in the meeting line of the two markers’ regions. 

C. Similarity Measure 

For quantitative analysis, we used the normalized volume 

error (NVE) as the similarity measure, which is defined as: 

.
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where VSEG is the volume of the lesion obtained from each of 

the segmentation approach and VGT is the volume of the 

ground truth. 

 

III. RESULTS AND DISCUSSION 

Fig. 2 shows the NVEs of the three lesions (i-iii) using 

different segmentation methods on two reconstruction 

approaches with varying smoothing parameters. Fig. 3(a-b) 

shows the average NVEs of all lesions for each 

reconstruction algorithm with varying smoothing parameters. 

In Fig 3(c), the total NVE of all lesion locations and all 

smoothing parameters for each reconstruction method is 

presented, which shows the performance of these 

segmentation algorithms on different reconstruction 

methods. 

Lesion 2 

Lesion 3 Lesion 1 

(a) (b) (c) 

(d) 
(e) 
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In general RGmax and RGmean produced relatively 

consistent segmented volumes for all lesions (different 

background activities) and across different reconstruction 

methods. RGmax produced an NVE of 0.78 ± 0.20 and 

RGmean produced a slightly higher NVE of 0.82 ± 0.18. In 

average, both segmentation methods showed the same trends 

of decreasing NVE when more smoothing strength was 

applied in both OSEM and MAP reconstructions (Fig. 3(a-

b)). Both methods produced relatively smaller segmented 

volumes compared to the ground truth volumes (4.5 mL), 

and when stronger smoothness were applied, the size of the 

segmented volumes increased and approached to the size of 

the ground truth and thus the NVEs decreased. This trend 

was consistent in every lesion and reconstruction methods, 

except for lesion 2 with MAP reconstruction (Fig. 2(b)(ii)), 

where the segmented volume was close to 4.5 mL when β = 

0.6 (and thus the NVE was low) and increased to more than 

7 mL when β = 0.8 (and thus the NVE increased) due to the 

reduced lesion-background contrast. 
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                                          (i) Lesion 1                                                           (ii) Lesion 2                                                     (iii) Lesion 3 

(a) OSEM reconstruction with varying FWHMs 
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                                            (i) Lesion 1                                                       (ii) Lesion 2                                                     (iii) Lesion 3 

(b) MAP reconstruction with varying βs 
 

Fig. 2.  NVE of four segmentation methods applied on the images reconstructed with (a) OSEM and (b) MAP for all the lesions.  
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                                (a) OSEM with varying FWHMs                      (b) MAP with varying βs                        (c) Total  NVE of OSEM and MAP 

 

Fig.3.  Average NVE of the three lesions using four different segmentation methods over  different post-smoothing parameters in OSEM (a) and MAP 

(b) reconstructions; and total NVEs  of the three lesions and of all smoothing parameters in OSEM and MAP (c).  
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                                              (a) OSEM with varying FWHMs                       (b) MAP with varying βs 

 

Fig.4. Increasing trend of optimum threshold (as a fraction of maximum intensity) over different smoothing parameters in OSEM (a) and MAP (b)  
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However, both region growing methods were sensitive to 

segmentation parameters. As described in Section II, we 

have optimized these parameters using the training datasets. 

When these parameters were changed, the volumes may 

change significantly. For example, Fig. 4 shows that the 

smoother the image, the higher the optimum threshold. Thus, 

applying lower threshold value to a smooth image may result 

in leakage. To avoid this leakage, the optimized parameter 

over all training data for RGmax was relatively high and 

therefore it resulted in smaller volumes. 

FCM yielded the least NVE of 0.44 ± 0.25 among all the 

methods. However, it performed differently with the 

reconstruction methods. It can be observed that for the post-

smoothed OSEM images, the best result was obtained on the 

images post-filtered with the strongest smoothness such as 

FWHM=12mm. In contrast, the NVE reached a minimum on 

the images reconstructed with MAP at moderate smoothing 

values and then increased again.  

WS produced the highest NVE of 2.66 ± 12.23 among all 

the methods because of one leakage case in MAP 

reconstruction at β = 0.8 for lesion 2. When this case was 

removed, the NVE was 0.63 ± 0.34. The leakage occurred as 

the lesion was located on the boundary of the lung and the 

mediastinum. Due to the smoothing effect, the gradient 

magnitude of the lesion was overshadowed by the gradient 

magnitude of the lung boundary (Fig. 5(b)). This caused the 

WS adapted to the more pronounced gradient of the lung 

boundary instead (Fig. 6(d)). Unlike the other segmentation 

methods which generally have decreasing NVE with 

increasing smoothness, the NVE of WS is very inconsistent. 
 

 

 

    
Fig. 5.  Gradient image of MAP reconstruction with β = 0.2 (a) and β 

= 0.8 (b) and OSEM reconstruction with FWHM 12mm (c) to show 

that compared to other reconstruction settings, MAP reconstruction 

with β = 0.8 resulted in low gradient magnitude of lesion 2.  
 

 
Fig. 6.  Screen shots of the segmentation results in MAP 

reconstruction, β=0.8, using: (a) RGmax, (b)  RGmean, (c) FCM, and 

(d) WS. Lesion 1, lesion 2 and lesion 3 are delineated with red, green 

and magenta color respectively. 

 

In general, MAP reconstructions yielded segmented 

volumes with less NVE compared to OSEM reconstructions 

for all segmentation methods, except the WS (Fig. 3(c)) due 

to the low gradient magnitude produced by MAP. 

IV. CONCLUSION 

In this study, the accuracy of four different segmentation 

methods: RGmax, RGmean, FCM and WS applied on the 

images reconstructed with two different reconstructions were 

analyzed. The evaluations on a physical phantom study 

demonstrate that RGmax and RGmean are relatively 

insensitive to the reconstruction methods, although the 

parameters should be carefully optimized according to the 

training datasets. FCM yielded the best performance among 

all the methods, especially on MAP reconstructions. The 

conventional WS may be unsuitable for PET images due to 

the low contrast subject and high correlation between pixels 

introduced by smoothing. We plan to evaluate more 

reconstruction methods including MAP with edge preserving 

priors and anatomical priors in future.  
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