
  

  

Abstract-We build on ultrasound elastography (UE) by 
offering a new method for diagnosing musculoskeletal injuries 
from estimated tissue displacements. Our strategy is to isolate 
the portion of tissue displacements that arise due to injury. 
Active shape models are constructed capturing displacement 
variation among normal tissue. New tissue is then evaluated by 
estimating displacements with (1) the active shape models and 
(2) a traditional UE tracking algorithm. The difference between 
the two estimates defined virtual axial displacement and used to 
identify injured tissue. Our method was tested by simulating 
planar tissue examined with ultrasound elastography. Images 
are presented of axial displacement and virtual axial 
displacement as well as axial strain and virtual axial strain, i.e. 
partial derivative of the respective displacements with respect 
to the axial coordinate. Injured tissue and uninjured tissue 
were not statistically different when comparing mean absolute 
value of axial strain covarying with the loading conditions. In 
contrast, uninjured tissue and injured tissue were statistically 
different when comparing absolute value of virtual axial strain 
covarying with loading conditions ሺ࢖ ൏ 0.0001ሻ. Statistical 
significance was considered ࢖ ൏ ૙. ૙૞.     

I. INTRODUCTION 
LTRASOUND elastography (UE) is a promising tool 
for evaluating mechanical behavior of soft tissue [1].  
Originally developed as an alternative to palpation, UE 

has been used to diagnose pathologies such as cancer and 
liver cirrhosis [2]. Recent work has focused on developing 
UE techniques to diagnose musculoskeletal soft tissue 
injuries [3]–[7]. Although there are several approaches to 
UE, one particular paradigm is to estimate strain during 
quasi-static loading. The goal of quasi-static UE is to 
identify pathology from estimated strain.   

When identifying musculoskeletal injury from strain, it is 
possible either to solve inversely for material properties or 
use strain as a qualitative measure of stiffness. Each 
approach is based on simplifying assumptions about material 
behavior such as linearity, uniform stress, isotropy, and 
plane strain [1],[2],[8],[9]. In contrast, musculoskeletal soft 
tissue is nonlinear and anisotropic [10]. Although these 
assumptions are inaccurate, even a poor estimate of Young’s 
modulus—or analogously tangent moduli for nonlinear 
materials—may contain good diagnostic information. 
Therefore, the key question is not whether a strain analysis 
provides accurate material properties, but whether a strain 
analysis can resolve an injury. This question motivates our 
interest in strain analyses that are not based on estimating 
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material properties.  
Our goal is to isolate the portion of tissue displacements 

that arise due to injury. To this end, uninjured tissue is used 
to construct active shape models [11], statistical models that 
capture image variations within a specific problem. In our 
problem, these models are used to capture displacement 
variations among uninjured tissue. Sources of variation 
include changes in loading, imaging, geometry, and native 
mechanical properties. New tissue is then evaluated by 
estimating displacements with two methods: 1) the active 
shape models and 2) traditional UE techniques. Diagnoses 
are made using the difference between the two estimates, 
which we call virtual axial displacement.   

In this paper, we take a first look at our strategy. We 
proceed by describing our method and simulation of events 
in which injured and uninjured planar tissues are examined 
with ultrasound elastography. The events were represented 
by a probability model that reflected in vivo statistical 
variation. We conclude by discussing our results.       

II. METHOD 

A. Background 
We restrict our attention to 2D ultrasound and axial 

displacements—i.e. displacements along the direction of 
wave propagation. Let axial displacements be denoted by a 
function ݑ ׷ Թଶ ՜ Թ. If a set ܸ contains all possible 
functions of axial displacements that could occur were the 
tissue of interest uninjured, then our goal is resolve 
differences between ݑ and every ݒ א ܸ. By definition, ܸ 
incorporates variations in displacements that arise when 
examining tissue.       

To improve contrast between injured and uninjured tissue, 
we subtract from ݑ the function ݒҧ א ܸ most “similar” to  ݑ: 
ݓ  ؠ ݑ െ ҧݒ ҧ,             (1)ݒ ؠ ,ݑሼ݃ሺݔܽ݉݃ݎܽ ݒ :ሻݒ א ܸ ሽ.     (2) 
 
Here, ݃ is some function that measures “similarity” between ݑ and ݒ. For uninjured tissue, ݑ lies in ܸ, and so, ݓ ൌ 0. 
Consequently, for injured tissue, ݓ is compared to zero, 
which leads to perfect contrast provided that ݑ ב ܸ. The 
function ݓ is called virtual axial displacement. In practice, ܸ, ݑ, and ݒҧ are estimated. Active shape models and 
traditional UE algorithms allow for these estimations.     

B. Active shape models    
To estimate the set ܸ, a training set is constructed by 

applying quasi-static loading to ݉ uninjured musculoskeletal 
structures and calculating displacements. With 2D 
ultrasound, displacements are calculated in the axial and 
lateral directions. (The lateral direction is perpendicular to 
the axial.) Displacements are measured on an ሺ݊ ൅ 1ሻ ൈ
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ሺ݌ ൅ 1ሻ grid, in which points are spaced at intervals of equal 
fractional distance along and transverse to the structure. An 
axial displacement image and its corresponding lateral 
displacement image are together reshaped into a 2ሺ݊ ൅1ሻሺ݌ ൅ 1ሻ ൈ 1 vector, which designates a column of a 
matrix ܺ. Eigenvectors and eigenvalues are calculated for 
the covariance matrix ሺܺ െ ሻሺܺߤ െ  ሻ், where μ is theߤ
column mean of ܺ. The vector ߤ is transformed back into 
mean axial and lateral images, ߞ and ߦ; the eigenvectors are 
transformed back into axial and lateral eigenimages, ܣ௜ and ܮ௜. A subset of ݇ axial and lateral eigenimages, ሼܣ௜, ௜ሽ௜ୀଵ௞ܮ , 
and their corresponding eigenvalues, ሼߣ௜ሽ௜ୀଵ௞ , are kept for 
subsequent analysis. Constructed images estimate V: 
 ܸ ൎ ൛ߞ ൅ ∑ ܽ௜௞௜ୀଵ ௜ܣ ׷   ܽ א Թ௞ൟ.     (3)  
 

C. Displacement estimation         
Displacement functions, ݑ and ݒҧ are estimated for new 

tissue using active shape models and traditional UE 
methods. The tissue of interest is deformed, ultrasound 
images are captured, and the grid of ሺ݊ ൅ 1ሻ ൈ ሺ݌ ൅ 1ሻ 
points is defined. Let ݎ and ܿ be matrices that contain axial 
and lateral coordinates of these points, and ܫ଴ and ܫଵ denote 
ultrasound images captured before and after deformation.  
First, ݒҧ is estimated by finding ܽ א Թ௞ that maximizes: 

 ݂ሺ ܫ଴ሺݎ, ܿሻ,  ଶሺܽሻሻ,        (4)ܫ 
 
where  
ଶሺܽሻܫ   ؔ ݎଵ൫ܫ  ൅ ߞ ൅ ∑ ܽ௜ܣ௜௞௜ୀଵ , ܿ ൅ ߦ ൅ ∑ ܽ௜ܮ௜௞௜ୀଵ ൯.  (5) 
 
The function ݂ measures similarity between two ultrasound 
images. Notice ݂ is related to ݃ at (2). The maximizer at (4), ෤ܽ א Թ௞, gives 
ҧݒ  ൌ ߞ ൅ ∑ ෤ܽ௜ܣ௜௞௜ୀଵ .        (6)  
    
 Next, displacements are estimated using UE displacement 
estimation. To improve computational efficiency, the 
displacements are initially seeded with: 
ߞ  ൅ ∑ ෤ܽ௜ܣ௜௞௜ୀଵ ; ߦ  ൅ ∑ ෤ܽ௜ܮ௜௞௜ୀଵ .      (7)  
  
The function ݑ is given by the resulting axial displacement 
estimations. Injuries are diagnocx`sed by comparing virtual 
axial displacements, ݓ ൌ ݑ െ  .ҧ, among different tissuesݒ
  

III. SIMULATION 
A. Training 
A probability model simulated events that uninjured 

musculoskeletal tissue was uniaxially stretched while being 
imaged with ultrasound. Geometry, material behavior, 
imaging window, and loading were represented by thirteen 
parameters, each of which was as a uniform random variable 
(Table 1). Geometry was designed to resemble a planar view 
of a ligament along its long axis (Fig. 1). Material behavior 

was expressed by a nearly incompressible, transversely 
isotropic strain energy function for fibrous soft tissue [10]:  

ܫଵሺܥ  ҧଵ െ 3ሻ ൅ ܫଶሺܥ ҧଶ െ 3ሻ ൅ ଷ൫eூҧరିଵܥ െ ܫ ҧସ൯ ൅ ఌଶ lnሺܬሻଶ,   (8) 
 

where ܫ ҧଵ, ܫ ҧଶ, and ܫ ҧସ are invariants of the isochoric portion of 
the right Cauchy-Green tensor and ܬ is the determinant of the 
deformation tensor. The constants, ܥଵ, ܥଶ, ܥଷ, and ߝ were 
random variables, and fiber direction varied linearly between 
surface tangents. Imaging window was specified by ߠ, the 
angle between the axial direction and the tissue’s short axis. 
Tissues were stretched by a factor ܵ.    

A set of 85 vectors of thirteen parameters were randomly 
sampled. Regions were meshed using triangular elements 
[13], and, assuming plane strain, Finite Element Analysis 
(FEA) estimated tissue displacements during events 
represented by the sampled vectors. Tissue displacements 
were resampled on a 501 ൈ 501 grid defined using 
fractional distance. Eigenimages were constructed and a 
subset was kept explaining 99.999% of the variation. 

    

B. Displacement Estimation  
Displacements were estimated for simulated uninjured and 

injured tissue structures examined with ultrasound during 

TABLE I 
SIMULATION PARAMETERS 

Symbol Quantity Range 

H Tissue height 5–10 mm 
T Width to height ratio 3–4 ߙ Quadratic coefficient 0-0.025 

R1, R2 Radii 6–9 mm 
A1 Location parameter ¾ඥܴଵଶ െ ݄ଶ –ඥܴଵଶ െ ݄ଶ
A2 Location parameter ¾ඥܴଶଶ െ ݄ଶ –ඥܴଶଶ െ ݄ଶ

C1, C2 Material constants 5–15 MPa 
C3 Material constant 50-250 MPa ߝ Material constant 500-1500 MPa 
S Global stretch 0.01–0.04 ߠ Imaging angle -5–5° 

L1, L2 Damage location Within the tissue 
R3 Radius of damage region 1–5 mm 

 

Parameters represented events that musculoskeletal tissue is loaded 
quasi-statically while imaged with ultrasound. 

ݕ ൌ ߙ ቀݔ െ ுଶڄ் ቁଶ ൅ ݕ  2/ܪ

ܶ ڄ  ܪ

 ݔ

 ߠ

Transducer 

Ligament

Bone
Bone

ܴ2ܴ1
૚࡭ܪ 2ܣ

Fig. 1: Tissue geometry resembled a ligament-bone complex along 
its long axis. Imaging window was specified by an angle ࣂ.
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uniaxial loading. Uninjured tissue was modeled using the 
previously described parameters. Injured tissue was modeled 
similarly except an additional parameter, ܦ, was 
incorporated into the isochoric portion of strain energy [14]: 

 ሺ1 െ ሻܦ ቀܥଵሺܫ ҧଵ െ 3ሻ ൅ ܫଶሺܥ ҧଶ െ 3ሻ ൅ ଷ൫eூҧరିଵܥ െ ܫ ҧସ൯ቁ. (9) 
 

The parameter ܦ represented fractional damage of matrix 
and fibers. Damage was restricted to a circular region. Three 
uniform random variables designated the region’s location 
and radius, and ܦ was set to 0.50 at the center and decreased 
quadratically to zero at the edge of the region.              

   Two sets of 20 random vectors were sampled. One set 
represented uninjured tissue, and the other set represented 
injured tissue. Each vector had the original thirteen 
parameters, whereas vectors in the injured set contained the 
additional three damage parameters. FEA was again used to 
calculate displacements. With the displacements, Field II 
software [15],[16] simulated ultrasound images captured 
before and after deformation. A 7MHz linear transducer with 
192 elements was used. Sampling frequency was 100 MHz 
and A-line spacing was 0.176 mm. Ultrasound images were 
up-sampled laterally by a factor of 8.  

Displacements were estimated from the ultrasound images 
using the active shape models and the quality-guided method 
[17] as the traditional UE algorithm. Normalized cross-
correlation was used for the function ݂ at (2), whereas 
MATLAB’s fmincon solved for the maximizer ෤ܽ. The values  ܽ௜ were constrained to lie between െ3ඥߣ௜ to  3ඥߣ௜. Axial 
by lateral size of the window was 2.20 mm by 2.20 mm; 
window overlap was 97% and 90% in axial and lateral 
directions respectively. Displacements were smoothed using 
denoising [18],[19], median [20], and low pass filters.      

C. Statistical Analysis 
Linear least squares [21] was used to estimate axial strain 

and virtual axial strain, partial derivatives of  ݑ and ݓ with 
respect to the axial coordinate. Mean absolute value of 
each strain was calculated over the entire structure. Linear 
regressions were fit for each mean and loading conditions ܶ. 
Regression were compared using Analysis of Covariance, 
which entails testing for statistical differences between 

slopes, and, when the slopes are not different, testing for 
differences between y-intercepts. Multivariate linear 
regressions were fit by including fractional area of damage 
region as a dependent variable. P-values were calculated 
using Student’s t-test and significance was ݌ ൏ 0.05.  

IV. RESULTS 
Twelve eigenvectors explained 99.999% of the variance 

in displacements, despite varying imaging window, material 
properties, geometry, and loading. The dominant eigenvector 
alone captured  98% of the variance. Images of virtual axial 
displacement illustrate that axial displacements in injured 
tissue deviated from those in normal tissue around the injury 
(Fig. 2). In the strain images, injuries were located for more 
negative values in axial strain and virtual axial strain. Edges 
effects were present in both types of strain images. 

Mean absolute axial strain and mean absolute virtual axial 
strain covaried linearly with the loading conditions. Mean 
absolute axial strain and the loading conditions had a strong 
linear relationship for both uninjured (ܴଶ ൌ 0.97) and 
injured tissue (ܴଶ ൌ 0.97) (Fig. 3). Comparitively, mean 
absolute virtual axial strain and the loading conditions had a 
weaker linear relationship for uninjured (ܴଶ ൌ 0.84) and 
injured tissue (ܴଶ ൌ 0.74) (Fig. 4). The regression lines 
indicate that the accuracy of the active shape models 
deteriorated with increasing loading conditions.  

Mean absolute virtual axial strain was a better indicator of 
injury than mean absolute axial strain. The images showed 
that axial strain was more negative in the injured region, but 
slopes of the lines for mean absolute axial strain were not 
statistically different (݌ ൌ 0.10ሻ. Assuming equal slopes, the 
y-intercepts were not statistically different (݌ ൌ 0.13). In 
contrast, slopes of the lines for mean absolute virtual strain 
were statistically different (݌ ൏ .0001). When fractional 
area of damage was included in the linear regression, the 
coefficient of this variable was not statistically significant 
for modeling mean absolute axial strain (݌ ൌ 0.52ሻ, but was 
statistically significant and postive for modeling mean 
absolute virtual axial strain (݌ ൏ 0.0001). By including 
fractional area of damage, 90% of the variance in mean 
absolute virtual axial strain was explained.       
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Fig. 2: Images of injured tissues show a) damage, b) axial displacement (mm), c) virtual axial displacement (mm), d) axial
strain, and e) virtual axial strain. Virtual axial displacements deviated from zero around the damage region, and axial
strain and virtual axial strain were more negative in the damage region. Scale bar represents 10 mm. 
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Fig. 3: Mean absolute value of axial strain was linearly related 
to the loading conditions. The slopes of the two lines were not 
statistically different, and, assuming equal slopes, the y-
intercepts were not statistically different. 

 
Fig. 4: Mean absolute value of virtual axial strain was linearly 
related to the loading conditions. The slopes of the two lines 
were statistically different (࢖ ൏ 0.0001).   

V. DISCUSSION 
We proposed a method to diagnose musculoskeletal 

injuries that combines techniques from active shape models 
and ultrasound elastography. Our method was tested by 
simulating events in which injured and uninjured 
musculoskeletal tissues were deformed while imaged with 
ultrasound. A probability model incorporated statistical 
variation, which arises among patients and examinations. 
Our results indicate that by isolating displacements that arise 
due to an injury, we can increase statistical differences 
between uninjured and injured tissues. 

Due to promising results, future work will continue to 
improve on our method and compare it to current approaches 
in more realistic scenarios. Our study required only a small 
number of eigenimages, but it is expected that more will be 
needed to capture the same variance in more realistic tissue. 
Computational efficiency will also be explored to determine 
whether real-time feedback can be achieved. In the worst 
case scenario, our method would require the time it takes to 

run each tracking algorithm individually, but we expect 
much better performance, since displacements are seeded in 
the second algorithm. Lastly, a possible extension is to use 
active appearance models [22], a variant of active shape 
models that would include variation in ultrasound images. 
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