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Abstract—Microarray data classification is a challenging prob-
lem due to the high number of variables compared to the
small number of available samples. An effective methodology
to output a precise and reliable classifier is proposed in this
work as an improvement of the algorithm in [1]. It considers the
sample scarcity problem and the lack of data structure typical of
microarrays. Both problem are assessed by a two-step approach
applying hierarchical clustering to create new features called
metagenes and introducing a novel feature ranking criterion,
inside the wrapper feature selection task. The classification ability
has been evaluated on 4 publicly available datasets from Micro
Array Quality Control study phase II (MAQC) classified by 7
different endpoints. The global results have showed how the
proposed approach obtains better prediction accuracy than a
wide variety of state of the art alternatives.

Index Terms—Microarray classification; metagenes; hierarchi-
cal representation; Treelets; feature selection; LDA; wrapper.

I. INTRODUCTION

Gene expression microarrays are a powerful high-
throughput technology which offers the ability to simultane-
ously measure thousands of gene expression values, thereby
providing a significant amount of multivariate data with which
it is possible to produce classifiers. The typical microar-
ray analysis setting constitutes an extreme case of high-
dimensionality (or sample scarcity) as there is a very large
number of available features with respect to the sample
number. In such circumstances, a feature selection process to
produce reliable classifiers is necessary as stated in [2], [3].

In this paper, an efficient and reliable microarray classifier,
able to reach the smallest prediction error using as few features
as possible to reduce the overfitting risk is proposed. It is
an evolution of the method presented in [1]. The literature
provides a vast number of microarray classifiers as remarked in
[4], among which evolutionary algorithms have obtained good
results [5], thanks to the mutation possibility of the feature set
during the train phase. A drawback of evolutionary algorithms
is stated in [6], which discusses how performance tends to
decrease when the feature set dimension grows to numbers
comparable to those of microarray datasets. On the other hand,
algorithms like Tree Harvesting [7], or Pelora [8], highlight
the usefulness of hierarchical clustering as a method to extract
interesting new variables to expand the original feature set.
The possibility to summarize groups of genes with similar
expression pattern in a single feature as input for the classifier
has many advantages. First, the interpretability of the selected

feature as a combination of correlated genes that may be
involved in the same biological process. Second, the robustness
to noise or random fluctuations because a group of correlated
genes useful for classification is less likely to be due to
chance than an individual gene. Third and last, classifying with
a cluster-representing features can highlight linear relations
among groups of correlated genes. The benefits of an expanded
feature set and of a flexible feature selection algorithm are
pursued in this paper through a novel classification scheme.
The proposed algorithm is an enhanced version of the two-
step process in [1]. At first, the original data are enriched via a
hierarchical clustering method. New features called metagenes
that are linear combination of the original gene expression
are added. Each metagene is a synthesis of a gene cluster
representing the common trend in a group of correlated genes.

The second step consists in the application of a flexible
wrapper feature selection process called Improved Sequential
Floating Forward Selection [6]. In this phase, a reliability
measure is introduced due to the microarray data characteristic
of sample scarcity. This reliability parameter increases the
information amount obtained with the commonly used error
rate estimation, gaining more insights about the actual data
distribution from the classifier point of view. Inside the feature
selection process, error rate and reliability are combined into a
final score to determine the predictive power of each candidate.
The key point in the current paper contribution with respect
to [1] is the score definition rule. The new rules make better
use of the reliability parameter, assigning more importance in
the decisional process and improving the feature selection.

The prediction performance of the proposed algorithm is
compared on four publicly available datasets, classified fol-
lowing seven different endpoints. The datasets are available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16716
and are a subset of the six datasets utilized in the Micro Array
Quality Control study phase II (MAQC) [9]. Results from
this paper are then compared to results obtained in MAQC
study following the same evaluation procedure, where more
than 30.000 models were built using many combination of
analytical methods.

This paper is organized as follows: in Section II, the
metagene creation process is described, while in Section III
the feature selection procedure is presented with particular
attention to the reliability parameter definition and to the
scoring rules. In Section IV, the experimental protocol is
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Original feature set G
0
=
{
g1, . . . , gp

}
Active feature set F = G

0
Metagene set M = ∅
For i = 1 : p-1

1) Calculate pairwise similarity metric d(fa, fb) for all fea-
tures in F

2) Find a,b : d(fa, fb) = max(d(·, ·))
3) New metagene mi = g(fa, fb) generation:

mi = αafa + αbfb =
∑p

i=1 βigi;

Each metagene is equivalently a linear combination of fa

and fb and a linear combination of all original features gi
4) F := F ∪ {mi} : add new metagene to active feature set
5) F := F\

{
fa, fb

}
: remove the two features fa, fb from

the active feature set
M :=M ∪{mi} : include metagene mi into the metagene
set

end
Define the new expanded feature set: F = G

0
∪M as the union

of metagenes and original gene expression profiles.

Fig. 1. General clustering algorithm.

detailed. The classification results are presented in Section
V, compared to many state of the art alternatives using the
same experimental protocol. A discussion about the utility and
efficiency of the proposed method is presented in Section VI.

II. FEATURE SET ENHANCEMENT

In the expansion of the original feature set process, the
clustering operation is not performed to find gene clusters, but
to generate a new set of features, each of which summarizes in
itself a cluster of genes. The expected result from a metagene
is a noise reduction with respect to individual genes thanks
to the filtering effect of the linear combination. The objective
is to highlight the common behavior of a gene cluster and
reproduce it into a metagene.

The chosen global approach is a bottom up, pairwise hi-
erarchical clustering described by the pseudo code of Figure
1. It is an iterative algorithm that, starting from individual
genes, merges the pair of most similar features at each step.
The newly created metagene is then added to the feature set
whereas the pair of most similar features are removed from it.
At the end of the process, the initial feature set of p genes is
expanded with p-1 metagenes. The key points in the metagene
creation are the similarity metric: d(·, ·) and the generation
rule: g(·, ·). Any change in one of these two functions implies
the generation of a different metagene set. Two metagene
generation methods have been studied in this work as in [1].

A. Treelets clustering

The first technique is based on Lee’s work in [10], where
an adaptive method for multi-scale representation and eigen-
analysis of data called Treelets is presented. This method
produces a clustering tree in which, at each level, the two
most similar features are chosen and replaced by a coarse-
grained approximation feature and a residual detail feature.
In Treelets, the Pearson correlation is chosen as similarity
measure: d(fa, f b) = 〈fa, f b〉/(‖fa‖ · ‖f b‖), where fa is
the sequence of gene expression values for all the samples.

The two newly created features, approximation and detail, are
obtained through a local Principal Component Analysis (i.e.
PCA) on the two child nodes: the coarse-grained approxima-
tion is defined as the first local principal component, while
the detail is the second one. In this work the approximation
feature is chosen as metagene at each level in the iterative
process.

B. Euclidean clustering

In the second technique, called Euclidean clustering, the
negative Euclidean distance, d(fa, f b) = −‖fa − f b‖2 is
chosen, reaching a maximum of zero when the two features
are equal. This choice slightly modifies the clustering process
in the metagene generation rule. The selection of the first PCA
component as metagene implies that it is a scaled weighted
average of the genes. An illustrative example where all features
are equal is presented in Figure 2. In this case, using the
first PCA component produces metagenes which are not pure
weighted average of genes. There is a scaling factor that
moreover depends on the number of genes in the cluster. This
phenomenon does not affect the Pearson correlation thus it is
irrelevant in the Treelets case, but it is definitely an issue when
a point-wise similarity is considered.

To correctly compare genes with metagenes, the latter
should be a pure weighted average of genes. To obtain that,
when a metagene mx is created, two versions of it are used.
The first one is the same as in the Treelets case, mx, while
the second is a scaled version of the former: mxscaled =
mx/‖β‖1. In this way, the scaled version, mxscaled, is a
pure weighted average of the corresponding genes, thus it
is used in the pairwise distance calculation and it is chosen
as metagene. From Figure 2, it can be seen how the scaled
versions are correctly comparable with the individual genes in
terms of Euclidean distance, obtaining d(m1scaled, f i) = 0.
Using the non scaled version, instead, would produce unde-
sired results like d(m1, f i) = (

√
2 − 1) · ‖mi‖2. The non

scaled version is maintained because it is used to preserve the
energy distribution among the elementary components when
a new metagene is built from mx as showed in Figure 2.
Without this approach, the m2scaled in Figure 2 would become
m2scaled = 1/4 · f1 +1/4 · f2 +1/2 · f3, giving more weight
to the last added feature.

III. FEATURE SELECTION

The metagene creation process enriches the initial feature
set with a whole new group of possibilities. The metagenes
can improve classification because they expand the available
feature space. Each one of them is the representation of the
common behavior of a gene cluster, thus can benefit from a
noise filtering effect derived from the linear combination. The
main problem now is to choose an appropriate feature subset
to train a precise and reliable classifier.

A. The IFFS algorithm

For the feature selection, we have chosen a determinis-
tic approach to avoid evolutionary algorithms problems of
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Feature set F
0
=
{
f1, f2, f3

}
with f1 = f2 = f3

Two metagenes will be created
1) metagene m1 joining f1 and f2

m1 =
√

1/2 · f1 +
√

1/2 · f2

m1scaled = 1/2 · f1 + 1/2 · f2

2) metagene m2 joining m1 and f3

m2 =
√

2/3 ·m1 +
√

1/3 · f3

m2 =
√

1/3 · f1 +
√

1/3 · f2 +
√

1/3 · f3

m2scaled = 1/3 · f1 + 1/3 · f2 + 1/3 · f3

Scaled versions m1scaled and m2scaled are used for Euclidean
clustering because they preserve the components dynamics. The
scaled versions will expand the feature set.

Non scaled versions m1 and m2 are used in the construction
phase with PCA as they preserve the energy distribution among
the components

Fig. 2. Example of metagene creation with Euclidean clustering.

precision loss when the feature set dimension grows, [6].
The chosen algorithm tries to preserve the advantages of an
evolutionary search allowing mutations of previous choices.
Figure 3 illustrates the algorithm flowchart. It is a modifica-
tion of the Sequential Floating Forward Selection algorithm
(SFFS) [11], with the introduction of a replacing step when
backtracking does not work. It is called Improved sequential
Floating Forward Selection (IFFS) and has proven to get better
or equal prediction results than SFFS [6]. In each step the
current feature subset is updated by choosing the best available
alternative depending on a J(·) performance metric. For each
alternative, the J(·) is obtained by training a classifier on the
candidate subset and evaluating its predictive ability.

B. Feature ranking criterion

The IFFS algorithm has been adopted for feature selection,
so a classifier is applied inside the selection phase. The Linear
Discriminant Analysis (LDA) [12] has been used in this study
because its simple classification rule makes the results easier
to interpret and more robust to overfitting [13]. Throughout the
feature selection process, the criterion J(·) has a determinant
role in the feature selection process. It sorts the features and
decides which is the best one, and it is an estimation of the
classifier predictive power with the current feature set. To
obtain a reliable estimation, a 10 times 5-fold stratified cross
validation process has been used.

Due to the microarray data characteristic involving few
samples and many dimensions, a J(·) criterion based only on
error rate may not be enough in ranking features. Indeed, it is
common to have a group of features with the same error rate
from which only one feature has to be selected. Furthermore,
due to the chosen 10 times 5 fold cross validation, slight error
rate differences can be due to an unfortunate dataset partition:
if a specific sample is included in the test set more times than
another it gains more relative weight in the error rate.

Fig. 3. IFFS feature selection algorithm.

1) The reliability parameter: To overcome the error rate
limitation as a fitness estimator in a small sample scenario,
an additional value is included to define the J(·) score: the
reliability. It takes into account that a feature that can obtain
well separated classes (i.e. high margin) is better than a feature
in which the two classes are separated only by a very thin
margin.

The reliability parameter r quantifies the estimation good-
ness as a weighted sum of sample distances from the classifi-
cation boundary. It is calculated on the test set samples and the
final value is the mean through the cross validation iterations.
The reliability is calculated inside a cross-validation iteration
for a two-class problem. It is defined in (1), where ntest is
the test set dimension, cl is the class of sample l (it can be
1 or 2), and p(cl) is the probability of class cl in the test
set. The value dl is the Euclidean distance of sample l from
the classifier boundary with positive sign in case of correct
classification or negative sign otherwise.

r =
1

ntest · σ̂d

[
ntest∈c1∑
l=1

dl
p(c1)

+

ntest∈c2∑
l=1

dl
p(c2)

]
(1)

Finally, σ̂d =
√

σ̂2
1

n1
+

σ̂2
2

n2
, is an estimation of intra class

variance of the sample distances from the classification bound-
ary. In order to get a more complete estimation, the intra-
class variance is estimated using all the samples from both
the training and the test sets; n1 and n2 are the number
of samples in class 1 and 2 respectively. The σ̂d definition
recalls the independent two-sample t-test denominator with
classes of different size and variance, as it is the most general
case for a two-class problem. In detail σ̂1 and σ̂2 are the
estimated variances of sample distance from boundary for
all samples of class 1 and 2 respectively. Dividing by σ̂d
guarantees that r is invariant to a scaling factor, thus obtaining
the same value for metagenes that are perfect scaled replicas
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of genes. Dividing by p(cl) assigns to each class the same
relative weight and it is useful when the test set distribution
is highly skewed. Reliability value, r ∈ [−∞∞], is positively
influenced by large mean class separation in the perpendicular
direction to the classifier boundary, and by small intra class
data variance. It is penalized by a factor proportional to error
value so that greater errors produce greater penalties, allowing
discrimination among features with equal error rates.

2) Score calculation: The final J(e, r) value is a combina-
tion of the mean error rate and the mean reliability parameter
along the cross validation iterations. A feature is ranked to
be better than another if its J(e, r) score is higher. This is
a crucial point in the feature selection because changing the
J(e, r) definition rule highly affects the chosen subset. The
score definition a key innovation to the algorithm presented
in [1], where the features were ranked following a two-level
lexicographic criterion. Features were ranked in terms of error
rate at first, thereafter, reliability was considered only to break
ties among features obtaining the same error rate. With such a
criterion, reliability influence loses importance as the test set
cardinality grows because the probability to obtain equal error
rates decreases proportionally To overcome that limitation
and to make more use of the information proceeding from
reliability too, new score rules are here proposed to unify in
a scalar value both error rate and reliability.

The objective is to propose a softer combination rule al-
lowing reliability comparison not only among features with
equal error rate. The first idea is to compare features by the
reliability value, properly penalized in terms of the error rate
to induce a fixed penalization factor for a constant error rate
difference. Such a behavior can be obtained introducing an
exponential penalization to the reliability value as detailed in
(2). For each feature, the J(e, r) score is obtained as in (2),
where r is the reliability value, e is the error rate value, and
α is a penalization parameter.

J = r · exp
(
−sign(r) · 100

α
· e
)

(2)

J(e, r) is a product of the reliability value with a penal-
ization coefficient ≤ 1 with exponential behavior depending
on the error rate value. The −sign(r) factor in the exponent
has been included to highly penalize features with negative
reliability values, while the α parameter defines the steepness
of the penalization. The α value defines the e−1 penalization
interval: between two feature with equal reliability value, an
α% difference in the error rate induces a e−1 penalization in
the final score. So, when α is small, the dominant parameter
is the error rate (an extreme case is when α→ 0 the reliability
has no influence at all), while when α is great the dominant
parameter becomes the reliability (when α→∞ the error rate
is not taken into account).

The proposed score is influenced both by error rate and re-
liability, allowing a feature with higher reliability and slightly
higher error rate to be considered better than another with
poor reliability but with a smaller error rate. This flexibility
is useful for small sample datasets like microarrays because it

takes into account the data distribution seen from the classifier
point of view, thus giving a higher score to features showing
high mean class separation and small intra-class variation.

The exponential penalization is not the only score consid-
ered in this paper, a linear combination of error rate and
normalized reliability has also been considered. The linear
combination score is obtained as in (3) as a weighted sum
of error rate e and a normalized reliability value rn =
(r −min(r))/max(r). The α parameter is bounded between
0 and 1 and it defines the relative weight of reliability with
respect to the error rate.

J = (α) · rn + (1− α) · (1− e) α ∈ [0, 1] (3)

This simple scoring rule allows a more flexible comparison of
reliability values among features with different error rates. It
has a linear trend both in the error rate and in the reliability
direction. With respect to the former exponential penalization
scoring, here, a constant penalization is added (not multiplied)
to a constant error rate increase.

Throughout the experiments, both the exponential penal-
ization and the linear combination criteria are compared for
microarray classification to highlight how differences in the
score definition imply performance changes.

IV. EXPERIMENTAL PROTOCOL

The analyzed data are a subset of the provided datasets
by the MAQC II consortium: six datasets containing 13
preclinical and clinical endpoints coded A through M; for
more information refer to [9]. Each endpoint corresponds to a
different sample classification so that the same dataset can be
classified following different criteria (e.g. treatment, outcome,
sex, random, etc.).

In this work, four out of six datasets have been used, corre-
sponding to endpoints A,C to H endpoints of [9], available
at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16716.
A detailed explanation of the endpoint composition is included
in Table I. These data have been chosen because they are
highly reliable, selected after a quality control process in
order to provide a common test ground and because for each
endpoint both a training set and an independent validation
set are provided [9]. Furthermore, many different laboratories
have tested their algorithm on the same datasets with the same
evaluation protocol (i.e. train the classifiers on the training set
with performance assessment on the validation dataset) and
published their final outcome [9], [14], [15], thus an accurate
benchmark can be performed to understand how well does a
proposed algorithm perform with respect to a large number
of state of the art alternatives. The experimental setup is a
sequence of five main steps: data preprocessing, metagene
creation, α optimization on small datasets, full-data analysis
with the chosen α values and a final performance assessment.

The data preprocessing step for all the datasets consists in
setting the minimum value to log210 to not consider small
valued probe sets followed by a mean removal operation along
the samples direction (i.e. each feature is set to have zero
mean). The metagenes are built as explained in Section II.
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TABLE I
MICROARRAY DATASETS USED FOR CLASSIFICATION.

Training set Validation set

Dataset Endpoint description Microarray plat-
form Samples Positives Negatives Samples Positives Negatives

Hamner Lung tumorigen vs.
non tumorigen A Affymetrix

Mouse 430.2.0 70 26 44 88 28 60

NIEHS Liver toxicant vs. non
toxicant C Affymetrix

Rat 230.2.0 214 79 135 204 78 126

Breast can-
cer

Pre operative treat-
ment response D Affymetrix

Human U133A 130 33 97 100 15 85

Estrogen receptor sta-
tus E 130 80 50 100 61 39

Multiple
Myeloma

Overall survival mile-
stone outcome F Affymetrix Human

U133Plus 2.0 340 51 289 214 27 187

Event-free survival
milestone outcome G 340 84 256 214 34 180

Sex of the patient H 340 194 146 214 140 74

In the next steps the predictive performance of the proposed
method is measured. The objective is to see if the changes in
the feature selection phase improve the prediction ability with
respect to the algorithm presented in [1] and to benchmark the
current performance with state of the art alternatives. As shown
in subsection III-B2, both the exponential penalization and the
linear combination depend on a α parameter, so the algorithm
has been tested on multiple α values. An optimization phase
has been added to choose a small set of α values for time
reasons. The chosen performance metric is the Matthews
Correlation Coefficient (MCC) [16], since, as stated in [9]
it is informative when the distribution of the two classes is
highly skewed, it is simple to calculate and available for all
models with which the proposed method has been compared
to. MCC values range from -1 (i.e. perfect inverse prediction)
to 1 (perfect prediction). The linear combination rule has been
tested a range of α values between 0.05 and 1 with 0.05
interval, the best selected value is 0.15. About the exponential
combination a range of α values from 5 to 100 with 5 interval
has been tested, choosing α = 10 for further application in
real world scenarios. In both cases, the results are quite stable
to small α variations as long as it maintains small values.

Once the α values have been chosen, the same analysis
is performed on the complete dataset (genes and metagenes)
applying the feature selection algorithm to train classifiers up
to five dimensions. Results are collected and the classifier
obtaining the best MCC value is considered as the measure
of the prediction potential of the method.

The complete analysis has been applied on all the datasets,
for all the endpoints in Table I, to find the predictive potential
of the proposed method. To have a complete comparison about
the feature enrichment techniques, experiments have been
performed adopting Treelets, Euclidean clustering and without
any metagene. In this way it is possible to evaluate which is
the best enrichment technique and quantify its benefits with
respect to the initial gene set. A set of experiments has also
been performed applying the lexicographic algorithm of [1], to
evaluate the improvements induced by the scoring techniques.

V. RESULTS AND DISCUSSION

The collected experimental results are presented in Figure
4. They represent the mean MCC value across the classified
endpoints. Data in Figure 4 are represented as columns with
the MCC value indicated above each bar. In Figure 4, bars
are named depending on the adopted classification method
and are sorted by increasing MCC value. Results coded by
dat XX prefix are extracted from +30.000 models evaluated
in [9]. More information about which laboratory or academic
institution is represented by dat XX identification can be found
in [9] supplementary material. It can be seen how they span
a range from 0.284 for dat 3, to a 0.490 for dat 24 in terms
of MCC.

The black column, labeled as Lexicographic is the best
result of applying the algorithm proposed in [1] to the MAQC
databases classification, which leads to a 0.423 mean MCC
value with Treelets clustering. Such not so outstanding predic-
tion ability is mainly due to the rigidness of the scoring system
in the feature selection phase which makes the feature ranking
utterly sensitive to slight error rate differences connected to the
cross validation process.

Results are highlighted depending on the adopted feature
enrichment technique: those adopting Treelets clustering are
represented as dark gray bars with the T xx prefix; those
adopting the Euclidean clustering are represented by bars filled
with black and white horizontal lines and are coded by the
E xx prefix; finally the results obtained without adding any
metagene to the initial dataset are visualized with a black
and white mosaic pattern and with the N xx prefix. For each
subgroup the score definition rules are coded as: exponential
penalization = exp or linear combination = lin. Finally,
labels include the α value. The exponential penalization ob-
tained better results for the Treelets clustering case and the
gene only case; on the contrary, the best result with the linear
combination is reached adopting the Euclidean clustering.

Analyzing the results, a general improvement has been ob-
tained with respect to the lexicographic scoring [1]. The results
using the exponential penalization or the linear combination
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Fig. 4. Mean MCC values obtained by classifying endpoints A,C,D,E,F,G,H provided by MAQC study [9]. Results are sorted by increasing MCC value.
Results from the MAQC study are the light gray dat xx columns. The black “Lexicographic” column shows the best result with algorithm from [1]. Results
with the current framework are highlighted depending on the feature enrichment method adopted: dark gray columns for the Treelets clustering, black and
white horizontal pattern for the Euclidean clustering, and a mosaic pattern if no metagenes are added to the original set.

reach higher mean performance rates.
In two out of three cases, No metagenes and Treelets

clustering, applying the exponential penalization rule allows
better results, while when the Euclidean clustering is chosen
the best alternative is to apply the linear combination rule.

The metagene creation phase is useful to classification
because better results can be obtained applying the Treelets or
the Euclidean clustering than without any metagene addition.
The best results are obtained applying the Treelets hierarchical
clustering with exponential penalization scoring. In this case,
the obtained MCC mean value is the highest among all
the alternative in Figure 4, thus highlighting the predictive
potential of the developed algorithm.

A summary of the observed results is that the changes in
the score definition have significantly improved the prediction
performance. Metagenes have proven useful for classification
and, if Treelets is used with exponential penalization rule it
is possible to reach a mean MCC value higher than a wide
variety of state of the art alternatives.

VI. CONCLUSION

In this paper, improvements to the microarray classification
method presented in [1] have been studied. The key con-
tribution has been to change the score definition inside the
feature selection phase: it allows a better use of the reliability
information, thus overcoming the limitations of the original
lexicographic sorting. The metagene creation process induced
benefits within this framework too, considerably improving
the mean performance with respect to solutions involving only
genes. Between the two proposed score metrics, linear com-
bination or exponential penalization, the latter has proven to
get the best results if Treelets is applied as feature enrichment.
Furthermore, in this case the mean MCC value is better than
all the state of the art alternatives compared in this study.

The proposed classification method has produced very inter-
esting classifiers with mean MCC value close to, and superior
to the best methods in [9]. The score definition rule with
exponential penalization allows to reach the best performance.
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