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Abstract—Gene selection is a crucial step when building a
classifier from microarray or metagenomic data. As the number
of observations is small, the gene selection tends to be unstable.
It is common that two gene subsets, obtained from different
datasets but dealing with the same classification problem, do
not overlap significantly. Although it is a crucial problem,
few works have been done on the selection stability. In this
paper, we first present some stability quantification methods,
then we study the variations of those measures with various
parameters (dimensionality, sample size, feature distribution,
selection threshold) on both artificial and real data, as well as
the resulting classification performance. Feature selection was
performed with t-test and classification with linear discriminant
analysis. We point out a strong empiric correlation between the
dimensionality/sample size ratio and selection instability.

Index Terms—Feature selection, small sample, stability, dimen-
sionality/sample size ratio.

I. INTRODUCTION

High-throughput technologies have allowed the production
of large genomic datasets: for instance, microarray data con-
tain the simultaneous expression of tens of thousands of
genes whereas NGS (Next Generation Sequencing) may reach
several millions of genes. The use of supervised learning
methods on these data makes classifiers predicting different
medical parameters. This classification task may be very useful
in the medical decision strategy, for instance, the classification
of tumor types, the prediction of the clinical outcome [1], or
for early disease detection [2]. We expect that in the next years,
these classifiers based on genomic data will help physicians
to take the right decision.

Although the microarray data contain the expression of
several thousands of genes, the final classifiers should be based
only on a small subset of genes. The first reason comes from
the disproportion between the number of genes and samples
of microarray datasets. Due to cost problems, microarray
datasets usually contain few patients (at most a few hundreds),
leading to what is commonly known as N << D problems:
classification tasks in which the number of features D is much
larger than the number of samples N . High dimensionality
and small sample size both increase the risk of overfitting and

decrease the accuracy of classifiers [3]. The second reason is
practical: it is easier and less expensive to use a classifier based
on a small subset of genes than on several thousands. To deal
with these problems, a gene selection is applied on the data
before classifier construction in order to reduce dimensionality.

Feature selection refers to the process of removing irrelevant
or redundant features (in our context, genes) from the original
set of genes, so as to retain a subset containing only informa-
tive genes useful for classification. Feature selection methods
can be broken down into three categories: filter, wrapper and
embedded methods. It is generally agreed that wrapper or
embedded methods should be preferred if it is technically
feasible [4]. However, on very high dimensional data, filters
remain the method of choice for tractability reasons.

Beyond classification performance, the other main objective
of the gene selection is to obtain a reliable and robust list of
predictive genes (signature). To validate clinically a diagnosis
system based on a classifier, the results and the gene selection
must be reproducible. It is therefore crucial that the gene se-
lection is stable, i.e. for a given classification task an accurate
gene selection identified on a dataset must be accurate for the
other datasets. Several groups have published signatures and
reported good classification performance, but unfortunately
the different signatures obtained, for the same classification
task, differed widely. The number of genes shared by different
signatures is not significantly higher than the overlap between
random selections. For instance, in [5], five classification
tasks dealing with a similar problem (breast cancer prognosis
prediction from gene expression data) were performed on five
different datasets, leading to very little overlap of the selected
genes. Several other studies, such as [6] and [7], emphasized
the difficulty to obtain a reproducible gene signature on small-
sample microarray datasets. The lack of stability of gene
selection is a blocking point in the development of classifiers.
As long as this stability problem of gene selection is not
solved, the classifiers based on genomic data cannot get from
lab’s experiments to medical applications in hospital. Some
works proposed feature selection methods improving selection
stability [8], [9]. However, none has been tested on several
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N << D datasets from the same classification task.
In this paper, we show that an acceptable stability of the

gene selection cannot be reached on most microarray datasets.
We investigate the behaviour of the feature selection stability
and its impact on the classifiers. We present two comple-
mentary and unbiased stability measures, then we perform
an empirical analysis of feature selection stability on both
artificial and real microarray datasets. This allowed us to shed
more light on the influence of many dataset characteristics
(number of examples, selection threshold, number of variables,
variable distribution) on feature selection stability. Our simu-
lations point out the lack of stability on small sample and high
dimensional data, with a notably strong relationship between
the N/D ratio and feature selection stability, and the resulting
classification performances. We provide an empirical lower
bound for the number of samples needed to reach a given
level of stability.

II. STABILITY MEASURES

The stability of a feature selection method can be defined as
the modestness of changes in the set of selected genes when
there are slight changes in training data. To evaluate it, many
different measures have already been described. We chose to
use four stability measures, which we will present according
to the taxonomy presented by Somol and Novovičová [10].

A. Relative weighted consistency, an unbiased feature-focused
measure

Among the stability measures sorted in the above-mentioned
taxonomy, only one was both selection-registering and subset-
size-unbiased: the relative weighted consistency CWrel [10].
It is based on a subset-size-biased measure, the weighted
consistency CW , corrected to be actually bounded by [0; 1]
no matter what the proportion of selected genes is. A value
of 0 indicates the lowest possible stability, while a value of 1
indicates the highest possible stability, i.e., if all feature subsets
have the same cardinality, all subsets are identical.

Let F = {f1, f2, ..., f|F|=D} be the set of features and S =
{S1, S2, ..., Sω} be a system of ω gene subsets obtained from
ω runs of the feature selection routine on different samplings,
Ω =

∑ω
i=1 |Si| be the total number of occurrences of any gene

in S and Ff be the number of occurrences of gene f ∈ F in
system S. CW was defined as follow:

CW (S) =
∑
f∈X

Ff
Ω
· Ff − 1

ω − 1
(1)

and CWrel was then derived by adjusting CW on its minimal
and maximal possible values CWmin and CWmax:

CWrel(S,F) =
CW (S)− CWmin(Ω, ω,F)

CWmax(Ω, ω)− CWmin(Ω, ω,F)
(2)

B. Partially adjusted average Tanimoto index, an unbiased
subset-focused measure

CWrel is a feature-focused measure, so we looked for a
subset-focused measure to complement it. Kuncheva’s stability
index [11] and the stability measure defined in [12] are both

subset-focused, but they can only be used on subsets of equal
cardinality. We retained the Average Tanimoto Index ATI ,
also introduced in [10]. ATI is a generalization based on
Kalousis’s similarity measure SS between two sets Si and
Sj [13]:

SS(Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

(3)

This similarity index is computed over all subset pairs, then
averaged:

ATI(S) =
2

ω(ω − 1)

ω−1∑
i=1

ω∑
j=i+1

SS(Si, Sj) (4)

ATI is subset-focused and selection-registering, but it is
also subset-size-biased. We propose a correction of this index,
the partially adjusted average Tanimoto index, defined as
follow:

ATIPA(S) = Max(
ATI(S)−ATIexp(S)

ATImax(S)−ATIexp(S)
, 0) (5)

where ATImax is the maximal possible value of ATI and
ATIexp is the expected value of ATI when genes subsets
are randomly defined. Because we will use a feature selection
method which outputs a subset of predefined size, ATImax =
CWmax = 1 (when all genes subsets are identical). To obtain
ATIexp, we used an experimentally-determined estimation,
computed as a function of the proportion of selected features.
It should be noted that the correction we performed in ATIPA
slightly differs from the one performed in CWrel: CWrel

is adjusted on the smallest possible value, while ATIPA is
adjusted on the expected value. The max operator ensures
that ATIPA is within the [0; 1] interval and not negative as it
could happen for the first argument of the max if the stability
happens to be worse than random.

C. Correlation-based measures

Both ATI and CW focus on the stability of selected genes.
This aspect is important for knowledge discovery but, for the
purpose of evaluating feature selection methods, the stability
of the ranking score over all genes may be an interesting
information, too. Selection-exclusion-registering measures will
be too biased when the proportion of excluded genes is too
high. Correlations of features scores and ranks, on the other
hand, provide a more balanced overview. However the latter
will be penalized when lots of genes have a similar relevance,
which occurs for example when a lot of genes are equally
irrelevant in a very high-dimensional dataset. So, we used the
average score (or weight) correlation SW and the average rank
correlation SR, as described in [13].

III. EXPERIMENTAL DESIGN

We performed a set of experiments on both artificial and
real data in order to assess the impact of different dataset
parameters on the gene selection. The investigated parameters
are: the number of samples (N ), the number of features (D),
the number of selected features for the construction of the
classifier (d) and the distribution of feature discrimination
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power (controlled by a parameter γ introduced in section
III-A).

A. Artificial data

We generated artificial data that have the main character-
istics of microarray data, i.e. few samples, a large number
of features a large proportion of which is useless w.r.t. the
classification task. The artificial data are based on a two-
classes Gaussian model. Each of the two classes follows
a normal distribution defined respectively by N (µ, I) and
N (−µ, I). The values µi represent the discrimination power
for each feature i, i.e. the higher µi, the more information
the feature contains for the classification. The elements µi
of µ were drawn from a triangular distribution with a lower
limit and mode equal to 0 (probability density function:
f(x) = 2 − 2x for x ∈ [0; 1]). To obtain various shapes
of strictly decreasing probability densities, simulating varying
feature dispersion and relevance, we then raised µ to a power
of γ (µi = µγi , γ ∈ [1; 10]). Finally, µ was scaled down so that
either F would yield a specified Bayes error (εBayes) or that
the largest µi had a specific value µimax. In our experiments
we chose εBayes = 0.10 or µimax = 0.15. From this model,
training and test sets are generated with 50 to 10000 features.
Training sets contains 25 to 10000 examples so that the N/D
ratio goes from 0.0025 to 200, exceeding the range of N/D
seen in real datasets.

The score used to rank features on the training data was
the absolute value of the t-score. Then the top d features with
the highest score were selected. We chose the t-test because
it should perform optimally on independent and normally
distributed features such as our artificial data. For various
combinations of parameters N , D, d and γ, and for various
values of N and D while keeping the N/D ratio constant,
100 training sets were generated. For each of them, feature
selection was performed and a linear discriminant analysis
(LDA) classifier was trained. Each classifier was then applied
on a test set consisting of 10000 examples. Besides the
stability measures described in section II, we measured the
frequency with which each feature was selected.

B. Real data

We experimented with three publicly available microarray
datasets, related to lung cancer [14] (D = 2000, N = 203,
N/D ≈ 0.10) leukemia [15] (D = 7129, N = 72,
N/D ≈ 0.01) and breast cancer [16] (D = 2000, N = 295,
N/D ≈ 0.15). For each datasets, for different values of
N , 100 training sets were generated by randomly drawing
examples from the dataset (without replacement). For each
of them, feature selection was performed and a classifier was
trained (using the same methods as with the artificial data).
Each classifier was then applied on a test set consisting of
the samples not included in the corresponding training set.
We measured the stability of the feature selection accross
the training sets (two different measures: stability accross all
training sets at once, and the average of stabilities within each

Fig. 1. On artificial data, with D = 1000, d = 100, γ = 2 and N = 50
(left) or N = 5000 (right). a) observed score (in absolute value) given real µi,
b) observed rank given real µi, c) observed rank given real rank. One point
per feature and per training set, the black curve is the average per feature, the
grey curves the average ± standard deviation.

training set - test set pair) and the average classification error
rate.

IV. RESULTS

A. Artificial data

In this set of simulations, we present the performance
and stability of the feature selection depending on dataset
parameters.

Figure 1 provides an intuitive overview of feature scoring
stability in two extreme settings: one with a very small sample
(N = 50, left column), the other one with a large sample
(N = 5000, right column). In the small sample case, feature
scores (Figure 1a)) do not vary much with feature µi, and
even though the most relevant features have a slightly higher
score than the least relevant ones on average, their scores vary
approximately on the same range. This contrasts with the large
sample case, where the most relevant features have scores in
the [8;12] range, far away from the least relevant ones, which
stay in the [0;3] range and are thus easy to tell apart. The
correlation between feature scores and µi decreases with N .

The resulting ranks reflect the inconsistency of the scores.
Figure 1b) represents observed feature ranks given feature µi,
Figure 1c) provides a slightly different visualization: observed
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Fig. 2. Observed probability for a feature to be selected given its real µi
(i.e. its increase of relevance). On artificial data, with D = 1000, d = 100
and γ = 2. a) N = 50 b) N = 5000, one point per feature and the curve
was obtained via logistic regression. c) N varying from 25 (curve with the
lowest value at µi = 0.15) to 10000 (first curve to reach 1). As the sample
size grows, the logistic shape increasingly stands out.

feature ranks (computed from scores) given true feature ranks
(computed from µi). Due to the way our model was conceived,
the least relevant features can be considered as noise, even
though technically they do have some very tiny relevance. So
having the worst features poorly ranked among each other is
not a bad result. However, in the small sample case, even the
true best features only have a slightly better average rank than
the other features. For over 90% of the remaining features,
the assigned rank is pure noise, as illustrated by scatter plot
and standard deviation lines (gray curves) on figure 1. In the
large sample case, the true best features are ranked much more
accurately, even though some noise remains among them, and
only the worst half of features are assigned to a mostly noisy
rank. The results show that in small-sample data there is no
correlation between the feature score and ranking obtained
from the selection methods and the actual quality of the
features.

From our simulations, we computed empirically the prob-
ability of each feature to be selected. Figure 2 presents the
evolution of this probability given µi. We can see that in the
small sample case (Figure 2a)), the probability for the most
relevant features to actually be selected does not reach 35%,
while even the least relevant features have a non negligible
probability of being selected. In the large sample case (Figure
2b)), the selection is much more accurate: all features with
µi > 0.10 have a probability to be selected close to 1 and all
features with µi < 0.05 are almost never selected. Figure 2c)
shows the evolution of the regression curve from N = 25
to N = 10000: as the sample size increases, the logistic
shape increasingly stands out, illustrating how the selection
progressively becomes more accurate. But only when the

sample size reaches around 1000 observations is the feature
selection algorithm able to select the most relevant features
with a good sensitivity. In small sample data, the probability
to reliably select good features is therefore very low.

Figure 3 presents the evolution of stability measures under
varying dataset parameters. The stability is much influenced
by the sample size N , with stability measures close to zero
when the sample size is around 100 and increasing a lot when
additional samples are added to the training set, up to 0.6+ for
AITPA and almost 0.9 for SW . It is also much influenced by
the total number of variables D, with fairly high values (0.4
to 0.6) when the dataset only contains 100 samples and 50
variables, quickly reaching close to zero with so few as 1000
variables.

To a lesser extent, stability is also influenced by the selection
threshold d. In this case, CWrel is minimal when we select
very few variables, then it increases to reach a maximum
when we select around 150-180 variables, finally it slowly but
regularly decreases as we add more unreliable variables. The
shape of this curve illustrates the difficulty to reliably identify
even the most relevant variables: trying to keep just the 2 best
features will yield highly unstable results. Trying to keep the
50 best features will include maybe the 5 or 10 best features
with a very high reliability, leading to a higher stability even
though the rest of the selection is not as stable. Note that in
this setting, obviously SW and SR do not vary, as they do not
take into account the fact that a feature was selected or not.

Variable distribution γ also has some influence on stability:
stability measures are minimal when variables are distributed
on the triangular distribution, and increase with γ, but fol-
lowing different patterns. SW always increases: this measure
is not penalized by ranking difficulties or by instability in the
final selection, and only benefits from variables taking extreme
values: variables with initial µi close to zero do not really lose
much score correlation when they get squished even closer to
zero, while variables with higher µi do benefit from getting
more isolated farther away from zero. SR increases at first,
but then starts decreasing after reaching a maximum at γ = 5:
this measure first benefits from the increased dispersion of
variables with high or intermediate µi, but at some point this
effect is overcome by the increased difficulty to rank variables
with intermediate µi (because we kept a constant, realistic
Bayes error, the more we streched the distribution the harder
intermediately relevant variables became to identify), which
eventually get too close to zero. CWrel and ATIPA, which
perform their selection based on a cutoff in the ranks, evolve
as a consequence of SR. However their decrease is somewhat
delayed because they are only affected by the top d rankings. It
is likely that a subset-size optimizing feature selection method
would see a higher influence of data distribution over selection
stability, because it would probably drop the decreasingly
relevant variables while keeping the ones increasingly easier
to identify.

Figure 4 shows the stability CWrel as a function of the
number of training examples for a constant N/D ratio. The
different curves correspond to different N/D ratios (from 0.01
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Fig. 3. Evolution of stability measures CWrel (triangles), ATIPA (circles),
SW (continuous line) and SR (dashes) given: a) N ∈ [25; 10000] b) D ∈
[50; 10000] c) d ∈ [2; 1000] and d) γ ∈ [1; 10]. When they were not the one
being iterated on, parameter values were: N = 1000, D = 100, d = D·10%,
γ = 2.

Fig. 4. Evolution of CWrel with the number of training examples for a
constant N/D ratio. The different curves correspond to different N/D ratios
(lowest: 0.01; highest: 10).

to 10). We see the stability is constant for a fixed N/D ratio,
except for some variations in the lowest dimension values
for N/D ≥ 5, caused by random variations in the problem
difficulty (very few selected variables on those specific points).
For small-sample problem, where N/D � 1, the stability
depends only on the ratio N/D. In real microarray data, the
N/D ratio typically ranges from 0.001 to 0.1, which leads
to a maximum stability of 0.2, in our simulations. Note that
those simulations are based on Gaussian, uncorrelated features,
which is one of the easiest classification problems. Moreover
we use a selection based on the t-test score, which is the
optimal feature selection method in this context. In microarray
data, the distribution of the classes is much more complex
than Gaussian and the optimal feature selection is unknown.
So, the stability on real data should be lower than the stability
on artificial data: the values reported on figure 4 should be

considered as upper bounds.

B. Real data

We made a set of experiments on three microarray datasets
in order to confirm the results obtained on artificial data based
simulations. We present here a summary of these results. The
error rate (results not shown) decreases exponentially with the
number of samples in the lunger cancer and leukemia datasets
(respectively, 13.5% for N = 20, 8% for N = 50, 5% for
N = 150 and 9.1% for N = 20, 4.4% for N = 30, 2.7% for
N = 50), more linearly in the breast cancer dataset (38.2%
for N = 20, 37.4% for N = 100, 36.3% for N = 200).

Table I presents stability measures and error rates observed
on real datasets for training set sizes of 50 and 100 (or 20 and
35 for the leukemia dataset). The stability measures presented
here were computed on strictly non-overlapping sets (pairs of
training and test sets) so are not biased by common examples
between the different runs. Although stability measures differ
in absolute value, they share a same trend, opposite to the error
rate. Stability increases with training set size. But globally it
remains rather low, although higher than on our artificial data
with similar dimensions. This is particularly intriguing in the
case of the breast cancer dataset, which has a higher stability
but a similar error rate compared to our artificial dataset. These
results also confirm the impact of the training set size on the
stability of feature selection.

We see that the values of the stability CWrel are higher
than the values reported in table 4 for the same N/D ratio. It
can be explained by the differences in the experimental design
between artificial and real data. In artificial data, the stability
is computed from a set of 100 independent datasets. In real
data, we have only one datasets that is split in two subsets,
this process is repeated 100 times. The 100 splits are not
independent, there is therefore a bias that artificially increases
the measured stability. Even with this bias, stability values are
low.

V. DISCUSSION AND CONCLUSION

In this paper, we have analyzed the performance of gene
selection and especially its stability on microarray data. We
used existing measures of stability and we introduced ATIPA,
a modification of the ATI stability measure adjusted to avoid
a bias on the number of selected features. We extensively
studied the relation between selection stability and dataset
characteristics from a large set of artificial data experiments.
We investigated the changes in stability when varying the num-
ber of examples, features, selected features and distribution of
the discrimination power of features. We show that in small
sample problems the probability to select the best features is
very low even with the optimal feature selection method. We
show empirically that for Gaussian data, the stability depends
on the N/D ratio. Since the stability of gene selection from
real data is lower than the selection stability on the simple
Gaussian data context, we can provide upper bound of stability
for real data in function of their size (N and D). The results
show that the stability is dramatically low (almost 0) for
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TABLE I
CLASSIFICATION ERROR RATE AND SELECTION STABILITY ON THE BREAST CANCER (VAN DE VIJVER), LUNG CANCER (BHATTACHARJEE) AND

LEUKEMIA (GOLUB) DATASETS

Measure
Breast cancer Lung cancer Leukemia

N=50 N=100 N=50 N=100 N=20 N=35
N/D=0.025 N/D=0.05 N/D=0.025 N/D=0.05 N/D=0.003 N/D=0.005

Error rate 38.2% 37.4% 8.0% 6.1% 9.2% 4.0%
CWrel 0.20 0.26 0.46 0.51 0.24 0.30
ATIPA 0.06 0.10 0.26 0.30 0.13 0.18
SR 0.09 0.14 0.51 0.58 0.22 0.26
SW 0.33 0.41 0.81 0.85 0.55 0.60

N/D ≤ 0.01. This leads to the conclusion that for any current
microarray data, it is not possible to obtain a stable gene
selection for a classification task. These results are coherent
with the literature suggesting that thousands of examples are
needed to obtain a stable feature selection on microarray data
[6], [17]. While this paper focuses on microarray data, it
should apply to all genomic data based classification problems.

The conclusions of this work have strong consequences
on the development of genomic data based classifiers since
we show the classification results are not reproducible. To
improve the stability of the gene selection, the first option
is simply to increase the number of examples in the datasets.
While research projects are necessarily limited in that respect,
it seems hopeless to try to construct a stable classifier based
only on a few tens of examples. A second way would be to
find reliable methods to reduce the dimensionality of the data
prior to applying usual filters. For instance, a priori biological
knowledge and unsupervised methods could be used to filter
some of the irrelevant genes. It could be also interesting to
exploit the redundancy among genes. Finally, we point out
that the stability measures actually estimate the ability of gene
selection methods to produce the same selection of genes.
Some studies have been able to successfully reuse the gene
selection identified from a microarray dataset on another one,
even though this selection was unstable [18]. So, it could be
interesting to use an ”exportability” measure that estimates if
a good gene selection identified on a given dataset remains
good on other gene datasets related to the same classification
task.
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