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Abstract— We propose an unobtrusive bed integrated system for 
monitoring physiological parameters during sleep. Our system 
uses textile electrodes attached on the bed sheet for measuring 
multiple channels of electrocardiogram from which one at a time 
is selected for RR-interval detection and force sensors located 
under a bed post for detecting breathing and movements. The 
movement information is also used to assist in heart rate 
detection.  We  tested  the  system  with  six  subjects  in  one  hour  
recordings and achieved an average of 94 % detection coverage 
and 99 percentile absolute error of 2.86 ms for the RR-interval 
signal. Mean absolute error of the detected respiration cycle 
lengths was 0.24 seconds. 

Keywords—Bed integrated ECG (EKG), Heart rate, Respiration 
rate, Unobtrusive physiological measurement, Night-time 
monitoring 

I. INTRODUCTION AND RELATED WORK 
Automatic monitoring of night-time physiological 

information especially the heart rate, the respiration rate and 
movements can be used in various applications. Examples 
include screening of medical disorders like sleep apnoea [1, 2] 
and monitoring of sleeping quality [3] or psychophysiological 
stress [4]. While polysomnography is used as a standard 
method for collecting reliable data from a sleeping person, the 
strength of the methods that do not require effort from the 
person being measured, is that they can be used to collect 
longitudinal data thus enabling a more comprehensive view of 
the  person’s  sleep  being  formed.  Also  the  effect  of  the  
measurement equipment on the sleep is minimized when using 
these unobtrusive techniques.  

Ballistography, which means the measurement of the 
mechanical signal produced by the heart beat or pulsatile blood 
movement and breathing is able to provide all the desired 
physiological parameters; the heart rate (HR), respiration rate 
(RR), and movements. Recent studies that have focused on the 
night-time HR detection based on the ballistocardiographic 
(BCG) signal have reported average HR errors between 0.34 % 
[5] and 1.79 % [6]. We obtained an average error percentage of 
0.45 % in an earlier yet unpublished study by using force 
sensors under all four bed posts. Also the detection coverage of 

the HR is important for reliable sleep analysis. Long 
continuous beat-to-beat-interval (BBI) series enable more 
reliable calculation of heart rate variability (HRV) parameters, 
which are commonly used in sleep staging and sleep quality 
evaluation. We achieved approximately 91 % average 
recognition coverage with the ballistographic method in 
unsupervised recordings while Kortelainen et al. reported 88 % 
coverage in [5]. Brüser et al. [6] reported 95 % coverage but 
they had instructed the test persons to stay still during the 
measurements.  

Even though fairly good accuracy and high recognition 
coverage of BBI data can be achieved with ballistographic 
sensors, it still may not be the optimal method for gathering the 
heart rate information. We achieved 95 % recognition coverage 
and 0.22 – 0.85 beats per minute (bpm) absolute HR error with 
a system that measures contact ECG using textile electrodes 
sewn on a bed sheet [7]. Other studies [8, 9] have reported 
detection coverage between 82 % and 93 % with large sized 
textile electrodes that have been located on a pillow and to the 
foot of the bed. These electrode locations allow the user to 
wear pajamas as long as the electrodes are in contact with the 
skin. In our system, the electrodes are attached horizontally to 
the bed sheet approximately to the height of the chest, which 
causes a requirement of naked upper body.  The accuracy of the 
detected RRI data has not been defined in [8] or [9] but 
probability of erroneously detected R-peaks is obviously higher 
than when using regular ECG electrodes. Also bed integrated 
non-contact capacitive ECG monitoring has been studied [10–
12]. The benefit of these systems is that the user is allowed to 
wear pajamas but they are much more prone to movement 
artifacts and electrical interferences and therefore do not 
necessarily provide benefits when compared with the 
ballistographic technique.   

Many authors who have developed ballistographic methods 
for night-time physiological parameter detection have 
developed besides HR detection, also methods for RR 
detection. Paalasmaa et al. [13] used multiple low-pass filters 
suited for different respiration rates for filtering the original 
ballistographic signal and then selected the filter that produces 
the most consistent breathing amplitudes. Wang et al. used a 
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single component of the wavelet transformed BG signal and an 
adaptive threshold to count the breathing cycles [14]. Breathing 
rate can also be detected as the frequency of the respiratory 
sinus arrhythmia seen in the RRI data but more reliable result 
can be calculated using the signal of the force sensors located 
under the bed post. Therefore we are combining the two 
measurement modalities in order to increase the overall 
accuracy of the received parameters.  

There exist examples of commercialized eHealth systems 
intended for monitoring night-time physiological activity. A 
Finnish company Beddit.com Ltd. has brought to the market a 
monitoring system for sleep quality assessment [15]. Emfit Ltd. 
is another provider of a bed installable, unnoticeable vital sign 
monitoring system [16]. Beddit’s system is primarily intended  
for the wellness related self-monitoring of sleep through a web 
service while Emfit’s system is targeted for larger units like 
care centers and nursing homes. Both these systems are based 
on measuring ballistographic signals with sensors placed 
between or under the mattresses.   

II. MATERIALS AND METHODS 

A. Measurement System 
We used a custom made data acquisition (DAQ) device for 

collecting the data. Our low noise DAQ device contains 16 
measurement channels, which can be used in the measurement 
of amplified ECG or other voltage signal. Also signals 
produced by piezoelectric sensors can be directly measured 
with the device. The input voltage range of the device is ± 2.18 
V with a resolution of 67 V. 

The DAQ is capable of transmitting the measurement data 
either through USB or by a wireless Bluetooth link. We used 
the USB mode in these tests because the application at hand 
does not require mobility. The maximum sampling rate with 
the wired connection is 1 kHz per channel but 250 Hz was 
found high enough for the ECG recording because the low-pass 
cut-of the measurement amplifiers was set to 40 Hz.  

1) Bed sheet ECG measurement electronics 
The electrodes we are using are manufactured by 

embroidering from silver coated polyamide yarn. The size of 
the oval shaped electrodes is 32 mm × 22 mm. A moisture 
insulating layer is used under the electrodes in order to slow 
down the drying of the electrodes after they are first moistened 
by  the  moisture  of  the  skin.  In  earlier  tests,  we  used  9.8  cm  
inter-electrode distance but in the current setup we decreased 
the inter-electrode distance to 5 cm. Shorter inter-electrode 
distance enables combining several ECG channels, which 
increases the signal-to-noise ratio (SNR) of the ECG as well as 
the amount of choices for channel selection.  

Our ECG amplifier contains eight measurement channels, 
seven of them for the bed sheet ECG channels and the 
remaining one for the reference signal recorded with 
conventional disposable Ag/AgCl electrodes manufactured by 
Ambu. All channels are identical, having two amplifier stages. 
The first stage is an instrumentation amplifier and the second is 
a non-inverting gain stage. Between the amplifier stages there 
is a first order high pass filter and after the second stage a 
second order 40 Hz Butterworth low-pass filter. The amplifiers 

used for the sheet ECG measurement are arranged so that each 
of them amplifies the potential difference between two adjacent 
electrodes. Fig. 1 shows the schematic of the amplifier 
connection of the first stage. 

The eight electrodes placed 5 cm apart cover a 38 cm wide 
area  in  the  middle  of  the  bed.  In  order  to  maximize  the  ECG 
signal quality, the pillow should be located so that the 
electrodes are approximately 10-25 cm below the edge of the 
pillow. Even larger variation in the axial electrode location is 
tolerable in most cases but especially when sleeping on the 
right side, the ECG signal quality starts to decrease when the 
electrodes are located more than 20 cm below the arm pit. 

2) Ballistography 
We use two force sensitive film sensors made of Electro 

Mechanical film (EMFi) material to measure ballistography 
and movement signals. Both sensors are located under one bed 
post. The size of the sensors is 10 mm x 20 mm and their 
approximate voltage sensitivity is 1 V/N with the high-pass 
cut-off frequency of 0.01 Hz. The ballistographic sensors are 
used for two purposes: firstly, for measuring the respiratory 
information and secondly, for assisting in ECG signal 
processing by providing movement information.  

B. Signal Processing 
The two sensor modalities, bed sheet ECG sensors and bed 

post force sensors, are otherwise processed separately but the 
movement information provided by the force sensor is used to 
assist in processing the sheet ECG signals. 

1) Combining and selecting the bed sheet ECG channels 
Before combining the bed sheet ECG signals they are first 

low-pass filtered digitally using a 10th order filter with 30 Hz 
cut-off and Butterworth like response. Combining the signals 
of adjacent bed sheet ECG channels increases the signal quality 
in two ways. Firstly, the noise caused by the measurement 
electronics and the interferences in the skin-electrode interfaces 
are independent between the channels if at least three channels 
are combined whereas the ECG signal is not independent. This 
increases the SNR by the square root of the number of 
combined channels. The more important source of 
improvement is the increased span of the measuring electrodes, 
which according to lead field theory, increases the 
measurement sensitivity deeper in the torso where the signal 
source, the heart, is located [17]. Fig. 2 shows an example of 
the improvement of the sheet ECG quality when the signals of 
three channels are combined. 

As seen from the Fig. 1, the channels can be combined 
simply by adding the adjacent bed sheet channels together. All 
possible combinations of one, two, three, etc. adjacent bed 
sheet channels, altogether 28 channel combinations are thus 
formed. The final preprocessing step is the high-pass filtering 
the signal with the non-linear method proposed by Keselbrener 
et al. in [18], which subtracts a 100 ms sliding median from the 
signal thus efficiently removing low frequency components but 
leaving the R-peaks untouched. 

The signals are then fed to the channel selection algorithm, 
which chooses the channel with the best signal quality to be 
used in R-R interval detection. The best channel is selected by 
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taking a 10-second sample of all the channels, then detecting 
R-peaks (all peaks with distinctive amplitude and steep enough 
rising and falling edges), and finally selecting the channel with 
the highest ratio between the average peak amplitude and the 
variance of the remaining baseline signal. If none of the signals 
fulfill the minimum requirements of the signal quality, then no 
channel is used and the channel selection is tried again after 
one second. The minimum requirements are that the found R-
peak candidates or RR-intervals should be physiologically 
reasonable and their amplitude as well as the SNR should be 
within predefined limits. Depending on the sleeping posture, R-
peaks may be negative or positive and both cases need to be 
considered. A more detailed description of the algorithm is 
found from [7]. The channel selection procedure is repeated if 
the quality of the ECG on the currently used channel decreases 
too much. 

Fig. 3 shows the RRI recognition result of one recording 
and the number of the measurement lead selected for the bed 
sheet RRI detection. As seen from the Fig. 3 a), an ECG lead 

formed by only a single measurement channel has been used 
most of the time in this recording but also channel 
combinations have been used. For example a lead formed by 
six channels has been selected and used between 4000–4200 
seconds.  

2) Heart rate detection and RRI post processing 
After the best channel is selected, R-peaks are searched 

from it. The R-peak detection algorithm is based on finding all 
distinctive peaks similarly as in the channel selection phase. 
The algorithm is based on the method published by 
Zhengzhong et al. in  [19]  with  some  modifications.  After  
finding the R-peaks, we used a second order polynomial fitting 
to find the exact peak location with sub-sample interval 
accuracy. The polynomial was fitted to three data points by 
taking one sample from the both sides of the original R-peak 
sample.  

After the whole recording has been analyzed and potential 
R-peaks have been found, the resulting RRI series is processed 
in order to find possible false positive detections caused noise 
peaks by investigating the peak interval signal.  Earlier we also 
developed an ectopic peak detector that finds and removes 
possible “not sinus node”-originated peaks based on their 
different morphology. These ectopic peaks should be removed 
before using the RRI signal in HRV analysis because they are 
not controlled by the autonomous nervous system.  

The RRI post processing algorithm also combines the RRI 
segments computed before and after the channel reselections if 
it concludes that no R-peaks have been missed during the 
reselection. 

3) Movement detection with force sensor  
We have used a variance of a 4 second sliding window for 

detecting the amplitude level of the force signals. Adaptive 
threshold level is empirically defined as ten times the median 
variance of the whole recording. This approach suits well for 
the offline analysis but for a real time application, another 
method for finding the threshold has to be used. 

The movement detector’s output should not be used as such 
in excluding the sheet ECG data because in most cases the 
sheet ECG quality is adequate for the HR detection also during 
small movements. We have used the movement detector to 
assist in the decision of launching the channel reselection 
process.  When  the  sheet  ECG’s  SNR  is  so  small  that  the  
channel reselection would normally be initiated, the movement 
detector is used for checking whether the small SNR is a result 
of the increased movement artifacts. We have noticed that 
smaller SNR can be tolerated if no movement is present, 
without compromising the HR detection accuracy. Therefore 
the HR detection can be continued without reselecting the 
channel if the deterioration of the SNR is caused by something 
else than movements. In this case the limit of the minimum 
allowable SNR is lower.  

4) Breathing rate detection 
Besides  the  heart  rate,  also  the  breathing  rate  is  an  

important and widely used physiological parameter in sleep 
analysis. Our breathing rate detection is based on finding 
ascending and descending zero crossings as well as local 
maximums and minimums from the ballistographic sensors’ 

 
Fig. 2. An example of low quality bed sheet ECG signals from three 
measurement channels (upper traces). The R-peaks become more 
distinguishable when the signals are combined (bottom trace). 

 

 
 
Fig. 1. Schematic of the input gain stage of the ECG amplifier. 
Summing the signals of channel 1 and channel 2 provides the ECG 
signal between the electrodes 1 and 3. 
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signals filtered with different pass-bands and calculating the 
repetition intervals of each parameter. Then all the interval 
signals are interpolated into 1 second sample interval and 
breathing rate is voted as the median of all the suggested 
intervals. Filtering the ballistogram signal with different pass-
bands for respiration detection was earlier used by Paalasmaa 
et al. in [13].  

5) Reference sensors 
Reference ECG signal was recorded using regular 

disposable electrodes attached to the chest. The electrode 
locations were selected so that they did not interfere with the 
sheet electrodes. The heart rate was calculated using the same 
algorithm than with the sheet ECG signals.  

The reference breathing rate was measured using an NTC 
thermistor placed inside a breathing mask. The resistance was 
measured with a voltage division connection. The respiration 
rate was calculated from the smoothed and detrended 
thermistor voltage by finding the maximum of each signal 
segment on the positive side. We found short sections where 
the amplitude of the reference breathing signal was 
significantly decreased from the recordings of two test subjects. 
We interpreted these sections as breathing obstructions and 
discarded them from the analysis. 

C. Test Measurements and Subjects 
We made test measurements with five male and one female 

subject. The subjects were 23-32 year old, normal weight and 
had no history of cardiovascular or breathing related problems.  
The measurements were made in laboratory settings using an 
80 cm wide spring mattress bed. The subjects were allowed to 
change their sleeping posture freely. The length of the 
recordings was approximately one hour and most of the 
subjects fell asleep during this time.  

III. RESULTS AND DISCUSSION 

A. RRI detection results 
Table 1 shows the heart rate detection coverage and the 99 

percentile error limits of the detected R-R intervals when the 
force sensor is used to assist in the decision of initiating the 
channel reselection. As seen from the Table 1, using the force 
sensor information improved the average RRI detection 
coverage by 1.1 % from 92.9 % to 94 %. While the 
improvement of the coverage provided by the force sensor is 
fairly small, a more important aspect is that because the 
channel is not changed so easily, there are overall less channel 
changes and the segments of continuously detected RRI data 
become longer. This benefits especially the calculation of 
frequency domain HRV parameters, which are usually 
calculated in sleep analysis from 30 or 60 second long data 
segments. 

Earlier we received 95.1 % average recognition coverage in 
overnight measurements using 9.8 cm inter-electrode distance 
and not combining the channels [7]. Because the measurement 
conditions in the current study are different (the measurement 
time is shorter and the portion of the time spent awake is 
longer), we also calculated the coverage with the current data 
by using only the 10 cm inter-electrode distance. The coverage 
achieved was 83.2 %, which shows that the improvement of the 
coverage is significant when the channel combinations are 
used. 10 cm distance was selected because it is close to the 
distance used in the earlier study. The difference still is that the 
combinations of two 5 cm channels provide also interlaced 10 
cm ECG leads in addition to the 10 cm leads, which are next to 
each other.  

Fig. 3 shows the RRI detection result from the recording of 
subject 6 (subfigure b) along with the information of the 
selected ECG lead (subfigure a).  ECG leads numbered as 1-7 
are the original ECG channels measured between two adjacent 
electrodes. Leads 8-12 are leads where two adjacent channels 
have been coupled by summing up their signals. Leads 13-17 
are formed by three channels, and so on. An average of 41.8 % 

TABLE II. RESPIRATION CYCLE LENGTH DETECTION COVERAGE AND 
ERROR. 

Subject 
number 

Respiration detection performance characteristics 
Detection
coverage  MAEa e < 0.25b e < 0.5b e < 1b 

1 72.8 0.06 99.4 100.0 100.0 

2 75.6 0.46 84.3 93.9 96.9 

3 73.5 0.42 87.1 93.4 96.2 

4 66.6 0.13 93.8 99.5 100.0 

5 69.6 0.13 96.3 99.4 99.8 

6 87.9 0.23 93.4 97.5 98.7 

Mean 74.3 0.24 92.4 97.3 98.6 

a. Mean absolute error (MAE) of respiration cycle length in seconds per breath. 

b. Percent of the detected respiration cycle lengths where the error is smaller than 0.25 
s, 0.5 s, and 1 s. 

TABLE I.    THE EFFECT OF THE FORCE SENSOR AND THE CHANNEL               
COMBINATION ON THE RRI DETECTION COVERAGE AND THE 
UNCERTAINTY    OF THE RRI DETECTION. 

Subject 
number 

Performance characteristics 
Cov. 

Forcea 99 perb Cov. no 
forcea 99 perb Cov.  

10 cma 99 perb 

1 97.27 1.71 97.19 1.64 96.67 1.30 

2 97.18 2.63 97.09 3.06 96.57 2.27 

3 92.00 3.42 90.72 3.21 83.85 3.89 

4 88.78 3.87 86.53 3.80 82.07 3.46 

5 96.78 2.50 96.75 2.63 75.47 3.49 

6 92.07 3.01 89.13 2.90 64.41 3.06 

Mean 94.01 2.86 92.90 2.88 83.16 2.91 

a. RRI detection coverage when the force sensor information is applied (column 2), not 
applied (column 4), and when using only 10 cm inter-electrode distances. 

b. 99 percentile of the absolute error in milliseconds with force sensor, without force 
sensor, and with only the 10 cm inter-electrode distance. 
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of the total measurement time of all subjects, the channel 
selection algorithm had selected a measurement lead formed by 
one channel as the best. A lead formed by two channels was 
used 21.8 % of the time, three channels 12.7 %, four channels 
16.2 %, five channels 1.6 %, and six channels 5.8 % of the 
time. The measurement lead formed by all seven channels was 
not selected in any of the recordings. 

Authors have used a lot of different metrics to describe the 
performance of their measurement systems and the uncertainty 
of the results. Commonly used values are mean absolute error 
(MAE)  as  in  [5]  and  [6]  or  RMS  error  as  in  [11].  Another  
suitable figure for reporting uncertainty or result is using 
percentile units, which tells about the uncertainty of the true 
positive detections and is not affected by possible false 
positives. We selected 99 percentile of the RRI signal’s 
absolute error as the metrics of the RRI uncertainty. The 
average 99 percentile limit for the error when using all channel 
combinations and the force sensor information was 2.86 ms, 
which is less than one sample interval, 4 ms. As seen from the 
Table 1, using the force sensor does not have a clear effect on 
the RRIs’ 99 percentile error in either way and neither has the 
use of only 10 cm inter electrode distance. 

We also calculated the RMS and MAE error figures for the 
measurements. The RMS error varied between 0.87 ms and 
11.04 ms between the recordings, the average RMS error being 
4.94 ms. The average RMS error converted to the beats per 
minute was 0.27 bpm (0.06 – 0.48 bpm).  The problem of using 
the RMS error is that few erroneously detected R-peaks in a 
recording may have a large effect on the result even when most 
of  the  RRIs  are  really  close  to  the  reference.  Mean  absolute  
error is less disturbed by random large errors. The RRI MAE of 
our recordings varied between 0.48 ms and 1.07 ms. The 
average was 0.91 ms.  Conversion to the percentage units 
yielded 0.050 % and 0.103 % as the min and max, and 0.088% 
as the average MAE percent from reference RRI. As one could 

assume based on the nature of the monitoring method, the 
0.088 % MAE is clearly smaller than the smallest error 
reported for the ballistocardiographic method (0.34 % in [5]). 
Also  the  RMS  error  reported  in  [11]  for  a  system  using  
capacitive electrodes (0.66 ± 0.57 bpm is outperformed by our 
0.27 bpm RMSE. 

Fig. 3. A one hour recording showing the measurement leads used for 
sheet RRI calculation in a). Leads 1-7 below the lowest green horizontal 
line are the single measurements channels, leads 8-13 between the two 
lowest horizontal lines are augmented channels formed from two 
adjacent channels etc. The green line in b) is the RRI signal calculated 
from the sheet ECG signals and the blue line is the reference RRI. The 
sections of shorter RR-interval in b) are results of larger movements and 
sleeping posture changes and are therefore not detected from the sheet 
ECG.  

 
Fig. 4. A 300 second example of a respiration recording. Reference 
signal  with  the  detected  peaks  is  shown  in  a),  signals  of  force  sensors  
filtered with different pass bands in b), respiration cycle length 
suggestions based on the signals of b) are shown in c), and respiration 
cycle lengths detected with the reference sensor and force sensors in d). 

a 

b 

a 

b 

c 

d 
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B. Breathing rate detection results 
Table 2 shows the performance characteristics of the 

breathing rate detection. The average respiration detection 
coverage 74.3 % is significantly lower than what is achieved 
with the sheet ECG and what is usually achieved with 
ballistocardiographic methods for RRI detection [5-6]. The 
reason  for  this  is  the  fairly  long  safety  marginal  before  and  
after the detected movements, which is required because strong 
filtering causes fluctuation into the signal baseline after the 
impulse like movement artifacts. The detection coverage of the 
respiration rate could probably be improved by a more efficient 
pre-processing of the signal and by using a different filtering 
method. Also Paalasmaa et al. used fairly long safety marginal 
and received 73 % coverage in [13]. The average mean 
absolute error of detected respiration cycle length was 0.24 
seconds. 97.3 % of the cycle lengths were less than 0.5 second 
apart from the reference, which is a similar result than what 
was reported in [13], 95.9 %. A 300-second example of 
respiration recording is shown in Fig. 4. As seen from the 
subfigure b), in this case the signal of the force sensor drawn in 
green has higher amplitude and less distorted waveform than in 
the other sensor whose signal is drawn in blue. This however 
varies and sometimes the other sensor offers better signal 
quality. The interferences cause a lot of erroneous respiration 
cycle length suggestions as seen in the subfigure c) but as seen 
in d), the median of the suggestion still follows the reference 
calculated from the signal in a) really well.  

IV. CONCLUSIONS AND FUTURE WORK 
We have presented an unobtrusive system for monitoring 

physiological signals while the person is in bed. The novelty of 
our system is in the combination of two sensor modalities; 
contact ECG integrated into the bed sheet for measuring heart 
rate and heart rate variability parameters and force sensors for 
measuring movements and respiration and for providing 
additional information for the heart rate detection algorithm to 
improve its performance. The results received from one hour 
long recordings with young healthy adults show that the 
detection coverage and accuracy of the received physiological 
parameters are so good that this information can be used in 
evaluation of the sleep structure and quality. 

 Further testing and longer recordings are still required to 
verify the performance with the people including wider 
demographics or who suffer from sleeping related disorders. 
Improvement of the respiration rate algorithm is another target 
of the future work. 
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