
GPU-SD and DPD Parallelization for Gromacs tools for
molecular dynamics simulations

Nicolae Goga1,2, Siewert Marrink

1Molecular Dynamics Group
University of Groningen

Groningen, The Netherlands
n.goga, s.j.marrink@rug.nl

Ruxandra Cioromela, Florica Moldoveanu

2Politehnica University of Bucharest
Bucharest, Romania

Ruxandra.cioromela12@gmail.com, fm@cs.pub.ro

Abstract—This article presents the GPU parallelization of new
algorithms SD and DPD types for molecular dynamics systems
developed by the Molecular Dynamics Group, University of
Groningen, the Netherlands. One should note that molecular
dynamics simulations are time-consuming simulations of systems,
running time ranging from days to weeks and months. Therefore
parallelization is a key issue for the well-running and use of MD
software. The paper presents the main ingredients of GPU
parallelization of the new algorithms and simulation results. It
can be concluded that the parallelization through the use of
graphical cards improves the performances of the runs as
compared to the serial version of the code.

Keywords-molecular dynamic systems, graphic cards systems,
CUDA programing

I. INTRODUCTION
Molecular simulation is a useful tool for studies of chemical

and biomolecular systems, ranging from simple liquids to
proteins and DNA in realistic solvent environments. Such
simulations allow functional observation of proteins, nucleic
acids, membranes and other building blocks. Molecular
Dynamics uses Newtonian equations of motions for describing
atomistic system movements. For preserving the temperature of
the particle systems, stochastic dynamics (SD), and, more
recently, dissipative particle dynamics (DPD) integrators are
used in the simulations.

This article presents the GPU parallelization of new
algorithms, SD and DPD types, developed by the Molecular
Dynamics Group, University of Groningen, the Netherlands.
One should note that molecular dynamics simulations are time-
consuming simulations of systems, running time ranging from
days to weeks and months. Therefore parallelization is a key
issue for the well-running and use of MD software. A recent
trend is to use the power of graphical cards for the
parallelization of MD code. As choice of implementation was
the tool Gromacs [3, 8] started in the MD group of Groningen -
an open-source tool used world-wide by academia and
industry.

The new algorithms were developed inside the OpenMM
library [9], provided by Stanford University, that Gromacs
interfaces in order to be able to run simulations also on GPU.
The OpenMM library has support both for CUDA architecture
provided by NVIDIA and OpenCL, the open standard defined

by Khronos Group. It has quite a wide range of algorithms
implemented that run on GPU, but still it’s not a valid
equivalent of Gromacs: its functionality is lower as compared
to Gromacs. This is explained by the fact that OpenMM has a
recent development history while Gromacs has a much longer
development history.

This paper is organized as fellow. The next section
outlines the new SD and DPD theory while Section III
presents briefly Gromacs and OpenMM engines of molecular
simulations. Section IV deals with the design and
implementation and Section V discusses the performance
issues. At the end, we draw the conclusions and some future
directions of development in Section VI.

II. SD AND DPD NEW ALGORITHMS
The movement of the particles in the traditional case

of stochastic dynamics for molecular systems starts from the
following basic equation:

where mi is the mass of the particle, vi' is the acceleration, Fi
is the force due to Newtonian particle interactions, mi Yi vi is
the friction force – that depends on a friction coeficient Yi and
is directly proportional with the velocity of the particle vi and
R(t) is a random term computed in such a way to maintain the
desired temperature of the system. In the DPD case the friction
and the random terms are considered between pairs of two
particles.
 The new developed algorithms take a new approach
that reduces the complexity of computations, in the sense of
applying the friction and the random terms at the levels of
velocities in place of forces. To get a better idea let's look to
the following figure.

In the figure, dt represents the time step (in picoseconds) at
which the simulation is performed. Every computational step,
the velocities are computed at the half of the dt range and the
positions are computed at the extremes of the range. The

Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics
& Bioengineering (BIBE), Larnaca, Cyprus, 11-13 November 2012

978-1-4673-4358-9/12/$31.00 ©2012 IEEE 251

application of friction and noise happens at the dt half-range.
The computation for the new SD algorithm proceed as
follows:

1. Update velocity due to Newtonian force:
v' = v(t+dt/2) + F/m * dt

2. Apply friction and noise

where f is a friction coefficient (constant given by
user) that fixes the coupling strength, Kb is Boltzman
constant, Tref is the desired temperature, and ξ is
white noise (random term).
3. Update positions and velocities

x(t+dt) = x(t) + (v'+v'')/2
v(t+dt/2)= v''

The algorithm described above is referred further in the paper
as SDNew. For DPD, the difference is in the fact that the
friction and random terms are applied between pairs of
particles to the velocity difference between the two particles.
There are three DPD variants that will be referred further in
the paper as follows: 1) ISO: when the friction is applied
between the velocity difference of two particles; 2) DPDPar:
when the friction is applied to the velocity difference of two
particles projected on the line that unites the coordinates of the
two particles; 3) DPDPerp: when the friction is applied to the
component of the velocity difference of two particles
perpendicular on the line that unites the coordinates of the two
particles.
 After introducing the new algorithms, in the next section we
will shortly present Gromacs and OpenMM tools.

III. GROMACS AND OPENMM
GROMACS (GROningen MAchine for Chemical

Simulation) [3] is an engine to perform molecular dynamics
simulations and energy minimization. It was first developed by
the Department of Biophysical Chemistry of the University of
Groningen and is still under ongoing development. Also,
GROMACS adoption in the Folding@Home project [4] is the
result of the continuous development and wide support of this
software.

 The package itself is composed not only from an MD
simulator, but also has a variety of tools for analyzing and
visualizing the output of the simulations [5]. Its functionality is
enabled by many lines of code and is dependent on the
mathematical models implemented in it. It also employs a
multitude of scientific algorithms and several dozen functions
(called “non-bonded kernels“) for the short-range non-bonded
interactions, each offering a different combination of methods
for electrostatic and van der Waals forces.
 OpenMM library [9] is developed by a team from
Stanford University, that Gromacs interfaces in order to be
able to run simulations also on GPU. The OpenMM library has
support both for CUDA architecture provided by NVIDIA and
OpenCL, the open standard defined by Khronos Group. It has a
quite wide range of algorithms implemented that run on GPU,

but still it’s not a valid equivalent of Gromacs: its functionality
is lower as compared to Gromacs. This is explained by the fact
that OpenMM has a recent development history while Gromacs
has a much longer development history. In the combination of
Gromacs/OpenMM our new algorithms were developed.

IV. ALGORITHMS IMPLEMENTATION
The way of executing the code for the 4 integrators is based on
the execution of CUDA code. The main computational flow
is represented in Figure 1 while in Figure 2 we represent the
GPU parallelization information flow.

First the integrator object is created. After creating it,
the afferent function will be executed. The functions that use
the integrators are written in plain C, but they call methods
and functions that use CUDA, implicitly the kernel functions.
Once a kernel is launched, it is executed on GPU.

Figure 1: Main computational flow

In consequence thousands of threads are created,

prepared to execute the same piece of code that resides in the
kernel. Once the kernel is prepared to be executed, data from
structures that are called inside the kernel code are brought in
the memory of the GPU and also the relevant data, in the
memory of each multiple processors.

I. For n simulations steps do
 I.1 Compute forces and energies due to particle
interactions in GPU fashion
 I.2 Update velocities and positions and velocities in

GPU fashion (detailed bellow)

 I.2.a load on gpu data;

 1.2.b instantiate a number of threads with the

kernel code for the integrator

 I.2. c. load in the thread the data needed from the

main memory

 (velocities, positions, factor, random

numbers)

 I.2.d. For each particle do specific computations

according to SD/DPD formulas

 end

252

This way, the threads have direct access to the data
relevant to them. Once all the threads are finished and the
kernel code has been executed, the results are sent to the
processor and RAM, and the execution is continued on the
CPU.
 In order to use this integrator, the friction factor must
be specified in the *.mdp file, also the reference temperature.
In the openmm_wrapper.cpp file of Gromacs, when this
integrator is called, a new object from the SDNew Integrator is
instantiated. This way, the specific methods and kernels are
called. The main algorithm is located in the kSDNewUpdate.h.
The kernel methods are called in the file CudaKernels.cpp,
where the SDNew integrator is created and used.

V.RESULTS
The integrators were tested on a system of coarse grained

water, parameterized with Martini [2]. The number of particles
varied from small systems to bigger systems. All the systems
were tested on a quadcore machine with processor type Intel
(R) Core (TM) i7 with 2.67 Mhz frequency and 1.5 Gb
internal memory per core and a NVIDIA GEForce 9600 GT

graphical card with 512 Mb memory and 64 GPU processors.

For performing the simulations, the integrators with the
names “SDNew”, “ISO”, “DPDPar”, “DPDPer” should be
specified in the *.mdp file (a file containing run parameters for
a simulation in Gromacs), at the integrator section. The
friction factor can take different values and the temperature is
also specified in this file.

The number of steps must be described in the input file.
For our system the reference temperature was 315 K.

Above, there is the table with the measures and
performances on 1, 2, 4 processors and on the NVIDIA
graphical board for the same algorithm, with implementations
according to the hardware architecture. We did the
measurements as an average of 8 runs. In table we put the
mean. The standard deviation was bellow 5%.

Analyzing the results, it can be noticed that the temperature
mainly converges to the reference temperature for all
integrators. Also, it can be observed that the performance
obtained on the GPU is greater than on a single processor, but
not equivalent with two processors. Generally, the
performances on the graphical board should be more increased
but due to the current implementation in OpenMM, this thing
is not possible (we performed similar simulations on the same
molecular systems with OpenMM/Gromacs without our
special algorithms and the trends are similar).

Comparing the ns/day obtained for one processor, for two
processors and on NVIDIA, it can be noticed that the
performance on NVIDIA is increased with almost 70%
comparing to one processor. But this happens on systems,
with less than 80000 particles. For larger systems the
performances on NVIDIA card start to be comparable to just
one processor. Because of the reduced memory of the GPU, a
big number of particles cannot be loaded on the board. Also it
means that the interchange of data between the GPU shared
memory of each microprocessor and the main slow memory of
the GPU occurs very often, that increases the latency. For
larger systems their is need for more data transfers between
the GPU memory and the ram memory, fact that explains the
decrease in the performance of the algorithm.

VI. CONCLUSSIONS
In this paper we describe the GPU parallelization of

novel SD and DPD algorithms of molecular systems
simulations. The new algorithms were developed by the
Molecular Dynamics Group of the University of Groningen.

Integrator Water (3200
particles)

Water (6400
particles)

Water(102400
particles)

SDNew 1 processor:
259.01 ns/day
2 processors:
576.05 ns/day
4 processors:
1080.1 ns/day
NVIDIA: 425.33
ns/day
Temperature:
314.97 K

1 processor:
117.851 ns/day
2 processors:
246.88 ns/day
NVIDIA: 184.898
ns/day
Temperature:
315.37 K

1 processor:
7.606 ns/day
2 processors:
16.318 ns/day

NVIDIA: 7.877
ns/day
Temperature:
314.916

ISO 1 processor:
238.16 ns/day
2 processors:
520.34 ns/day
NVIDIA: 410.75
ns/day
Temperature:
314.31 K

1 processor:
108.91 ns/day
2 processors:
220.68 ns/day
NVIDIA: 181.122
ns/day
Temperature:
314.88 K

1 processor: 6.57
ns/day
2 processors:
14.13 ns/day
NVIDIA: 7.778
ns/day
Temperature:
314.889 K

DPDPar 1 processor:
234.27 ns/day
2 processors:
516.55 ns/day
NVIDIA: 409.682
ns/day
Temperature:
314.332 K

1 processor:
103.67 ns/day
2 processors:
215.85 ns/day
NVIDIA: 181.484
ns/day
Temperature:
314.679 K

1 processor: 5.87
ns/day
2 processors:
12.24 ns/day
NVIDIA: 7.772
ns/day
Temperature:
314.646 K

DPDPer 1 processor:
224.15 ns/day
2 processors:
527.67
ns/dayNVIDIA:
408.804 ns/day
Temperature:

1 processor:
101.13 ns/day
2 processors:
213.17 ns/day
NVIDIA: 181.006
ns/day
Temperature:

1 processor: 5.34
ns/day
2 processors:
11.45 ns/day
NVIDIA: 7.790
ns/day
Temperature:

253

The algorithms were parallelized on the Gromacs/OpenMM
software for molecular dynamics.

The performances of the algorithm have been
compared with the performances of the code on one, two and
four processors. It can be observed that the performance
obtained on the GPU is greater than on a single processor, but
not equivalent with two processors. Comparing the ns/day
obtained for one processor, for two processors and on
NVIDIA, it can be noticed that the performance on NVIDIA is
increased with almost 70% comparing to one processor. This
happens on systems with less than 80000 particles. For larger
systems the performances on NVIDIA card start to be
comparable to just one processor. Similar conclusions for
larger atomistic systems were drawn for other MD algorithms
on GPU in literature (see for example [1]). It can be concluded
that the parallelization through the use of graphical cards
improves the performances of the runs as compared to the
serial version of the code. More improvements are possible for
the case of larger atomistic systems. Second, although the
GPU performances were slower than running on two cores,
the described work opens the way for getting the new
algorithms on GPU, which for other molecular systems is
expected to give better results as compared with more cores
runs.

 As future work, the new code, representing the
implementation of the integrators, will become a plug-in that
the developing research group of OpenMM from Stanford
wants to integrate into the library, in order to be used world
wide.

REFERENCES
[1] S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand, A.

L. Beberg, D. L. Ensign, C. M. Bruns, V. S. Pande. Accelerating
Molecular Dynamic Simulation on Graphics Processing Units.” J. Comp.
Chem., 30(6):864-872 (2009)

[2] Siewert J. Marrink,,H. Jelger Risselada,Serge Yefimov,D. Peter Tieleman,
and and ,Alex H. de Vries, The MARTINI Force Field:� Coarse
Grained Model for Biomolecular Simulations, The Journal of Physical
Chemistry B 2007 111 (27), 7812-7824.

[3] D. van der Spoel, E. Lindhal, B. Hess and et. al, Gromacs: fast, flexible
and free. J. Comput. Chem., 2005.

[4] Folding@home. http://folding.stanford.edu.
[5] D. van der Spoel, E. Lindhal, B. Hess, and et. al, Gromacs user manual

version 3.3. [online], 2006.
[6] B. Hess, C. Kutzner, D. van der Spoel, and et. Al, Gromacs 4: Algorithms

for highly efficient, load-balanced, and scalable molecular simulation. J.
Chem. Theory Comput., 2008.

[7] K. J. Bowers, R. O. Dror, and D. E. Shs aw. Zonal methods fo the parallel
execution of range-limited N-body simulations. J. Comput. Phys., 2007.

[8] Gromacs, www.gromacs.org
[9] OpenMM, https://simtk.org/home/openmm

254

