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Abstract—This article presents the GPU parallelization of new 
algorithms SD and DPD types for molecular dynamics systems 
developed by the Molecular Dynamics Group, University of 
Groningen, the Netherlands. One should note that molecular 
dynamics simulations are time-consuming simulations of systems, 
running time ranging from days to weeks and months.  Therefore 
parallelization is a key issue for the well-running and use of MD 
software. The paper presents the main ingredients of GPU 
parallelization of the new algorithms and simulation results. It 
can be concluded  that the parallelization through the use of 
graphical cards improves the performances of the runs as 
compared to the serial version of the code. 

Keywords-molecular dynamic systems, graphic cards systems, 
CUDA  programing  

I. INTRODUCTION 
Molecular simulation is a useful tool for studies of chemical 

and biomolecular systems, ranging from simple liquids to 
proteins and DNA in realistic solvent environments. Such 
simulations allow functional observation of proteins, nucleic 
acids, membranes and other building blocks.  Molecular 
Dynamics uses Newtonian equations of motions for describing 
atomistic system movements. For preserving the temperature of 
the particle systems, stochastic dynamics (SD), and, more 
recently, dissipative particle dynamics (DPD) integrators are 
used  in the simulations.  

This article presents the GPU parallelization of new 
algorithms, SD and DPD types, developed by the Molecular 
Dynamics Group, University of Groningen, the Netherlands.  
One should note that molecular dynamics simulations are time-
consuming simulations of systems, running time ranging from 
days to weeks and months.  Therefore parallelization is a key 
issue for the well-running and use of MD software. A recent 
trend is to use the power of graphical cards  for the 
parallelization of MD code. As choice of implementation was 
the tool Gromacs [3, 8] started in the MD group of Groningen - 
an open-source tool  used world-wide by academia and 
industry. 

The new algorithms were developed inside the OpenMM  
library [9], provided by Stanford University,  that Gromacs 
interfaces in order to be able to run simulations also on GPU. 
The OpenMM library has support both for CUDA architecture 
provided by NVIDIA and OpenCL, the open standard defined 

by Khronos Group. It has quite a wide range of algorithms 
implemented that run on GPU, but still it’s not a valid 
equivalent of Gromacs: its functionality is lower as compared 
to Gromacs. This is explained by the fact that OpenMM has a 
recent development history while Gromacs has a much longer 
development history.  

This paper is organized as fellow.  The next section 
outlines the new SD and DPD theory while Section III 
presents briefly Gromacs and OpenMM engines of molecular 
simulations. Section IV deals with the design and 
implementation and Section V discusses the performance 
issues. At the end, we draw the conclusions and some future 
directions of development in Section VI.  

II.  SD AND DPD NEW ALGORITHMS 
The movement of the particles in the traditional case 

of stochastic dynamics for molecular systems starts from the 
following basic equation: 

 
 

 
where mi is the mass of the particle,  vi' is the acceleration, Fi 
is the force due to Newtonian particle interactions, mi Yi vi  is 
the friction force – that depends on a friction coeficient Yi and 
is directly proportional with the velocity of the particle vi and 
R(t) is a random term computed in such a way to maintain the 
desired temperature of the system. In the DPD case the friction 
and the random terms are considered between pairs of two 
particles. 
 The new developed algorithms take a new approach 
that reduces the complexity of computations, in the sense of 
applying the friction and the random terms at the levels of 
velocities in place of forces. To get a better idea let's look to 
the following figure.   
 
 
 
 
 
In the figure, dt represents the time step (in picoseconds) at 
which the simulation is performed.  Every computational step, 
the velocities are computed at the half of the dt range and the 
positions are computed at the extremes of the range. The 
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application of  friction and noise happens at the dt half-range.   
The computation for the new SD algorithm proceed as 
follows: 
 

1. Update velocity due to Newtonian force: 
v' = v(t+dt/2) + F/m * dt 

2. Apply friction and noise 

where f is a friction coefficient (constant given by 
user) that fixes the coupling strength, Kb is Boltzman 
constant, Tref is the desired temperature, and ξ is 
white noise (random term). 
3. Update positions and velocities 

x(t+dt) = x(t) + (v'+v'')/2 
v(t+dt/2)= v''  

 
The algorithm described above is referred further in the paper 
as SDNew. For DPD, the difference is in the fact that the 
friction and random  terms are applied between pairs of 
particles to the velocity difference between the two particles. 
There are three DPD variants that will be referred further in 
the paper as follows: 1) ISO: when the friction is applied  
between the velocity difference of two particles; 2) DPDPar: 
when the friction is applied to the velocity difference of two 
particles projected on the line that unites the coordinates of the 
two particles; 3) DPDPerp: when the friction is applied to the 
component of the velocity difference of two particles 
perpendicular on the line that unites the coordinates of the two 
particles. 
 After introducing the new algorithms, in  the next section  we 
will shortly present Gromacs and OpenMM tools.  

III. GROMACS AND OPENMM 
GROMACS (GROningen MAchine for Chemical 

Simulation) [3] is an engine to perform molecular dynamics 
simulations and energy minimization. It was first developed by 
the Department of Biophysical Chemistry of the University of 
Groningen and is still under ongoing development. Also, 
GROMACS adoption in the Folding@Home project [4] is the 
result of the continuous development and wide support of this 
software. 

  The package itself is composed not only from an MD 
simulator, but also has a variety of tools for analyzing and 
visualizing the output of the simulations [5]. Its functionality is 
enabled by many lines of code and is dependent on the 
mathematical models implemented in it. It also employs a 
multitude of scientific algorithms and several dozen functions 
(called “non-bonded kernels“) for the short-range non-bonded 
interactions, each offering a different combination of methods 
for electrostatic and van der Waals forces.  
 OpenMM  library [9] is developed by a team from  
Stanford University,  that Gromacs interfaces in order to be 
able to run simulations also on GPU. The OpenMM library has 
support both for CUDA architecture provided by NVIDIA and 
OpenCL, the open standard defined by Khronos Group. It has a 
quite wide range of algorithms implemented that run on GPU, 

but still it’s not a valid equivalent of Gromacs: its functionality 
is lower as compared to Gromacs. This is explained by the fact 
that OpenMM has a recent development history while Gromacs 
has a much longer development history.  In the combination of 
Gromacs/OpenMM our new algorithms  were developed.  

 

IV. ALGORITHMS IMPLEMENTATION 
The way of executing the code for the 4 integrators is based on 
the execution of CUDA code.   The main computational flow 
is represented in Figure 1 while in Figure 2 we represent the  
GPU parallelization information flow. 

First the integrator object is created. After creating it, 
the afferent function will be executed. The functions that use 
the integrators are written in plain C, but they call methods 
and functions that use CUDA, implicitly the kernel functions. 
Once a kernel is launched, it is executed  on GPU.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Main computational flow 
 
In consequence thousands of threads are created, 

prepared to execute the same piece of code that resides in the 
kernel. Once the kernel is prepared to be executed, data from 
structures that are called inside the kernel code are brought in 
the memory of the GPU and also the relevant data, in the 
memory of each multiple processors.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

I. For n simulations steps do 
 I.1 Compute forces and energies due to particle
interactions in GPU fashion 
 I.2 Update velocities and positions and velocities in

GPU fashion (detailed bellow) 

                       I.2.a load on gpu data; 

              1.2.b instantiate a number of threads with the

kernel code for the integrator 

               I.2. c. load in the thread the data needed from the

main memory 

                        (velocities, positions, factor, random

numbers) 

              I.2.d. For each particle do specific computations

according to SD/DPD formulas 

    end 
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This way, the threads have direct access to the data 
relevant to them. Once all the threads are finished and the 
kernel code has been executed, the results are sent to the 
processor and RAM, and the execution is continued on the 
CPU. 
  In order to  use this integrator, the friction factor must 
be specified in the *.mdp file, also the reference temperature. 
In the openmm_wrapper.cpp file of Gromacs, when this 
integrator is called, a new object from the SDNew Integrator is 
instantiated. This way, the specific methods and kernels are 
called. The main algorithm is located in the kSDNewUpdate.h. 
The kernel methods are called in the file CudaKernels.cpp, 
where the SDNew integrator is created and used. 

V.RESULTS 
The integrators were tested on a system of coarse grained 

water, parameterized with Martini [2]. The number of particles 
varied from small systems to bigger systems.  All the systems 
were tested on a quadcore machine with processor type Intel 
(R) Core (TM) i7 with 2.67 Mhz frequency and 1.5 Gb 
internal memory per core and a NVIDIA GEForce 9600 GT 

graphical card with 512 Mb memory and 64 GPU processors. 

For performing the simulations, the integrators with the 
names “SDNew”, “ISO”, “DPDPar”, “DPDPer” should be 
specified in the *.mdp file (a file containing run parameters for 
a simulation in Gromacs), at the integrator section. The 
friction factor can take different values and the temperature is 
also specified in this file.  

The number of steps must be described in the input file.  
For our  system the reference temperature was 315 K.  

Above, there is the table with the measures and 
performances on 1, 2, 4 processors and on the NVIDIA 
graphical board for the same algorithm, with implementations 
according to the hardware architecture.  We did the 
measurements as an average of 8 runs. In table we put the 
mean. The standard deviation was bellow 5%. 

Analyzing the results, it can be noticed that the temperature 
mainly converges to the reference temperature for all 
integrators. Also, it can be observed that the performance 
obtained on the GPU is greater than on a single processor, but 
not equivalent with two processors. Generally, the 
performances on the graphical board should be more increased 
but due to the current implementation in OpenMM, this thing 
is not possible (we performed similar simulations on the same 
molecular systems with OpenMM/Gromacs without our 
special algorithms and the trends are similar).  

Comparing the ns/day obtained for one processor, for two 
processors and on NVIDIA, it can be noticed that the 
performance on NVIDIA is increased with almost 70% 
comparing to one processor.  But this happens on systems, 
with less than 80000 particles. For larger systems the 
performances on NVIDIA card start to be  comparable to just 
one processor. Because of the reduced memory of the GPU, a 
big number of particles cannot be loaded on the board. Also it 
means that the interchange of data between the GPU shared 
memory of each microprocessor and the main slow memory of 
the GPU occurs very often, that increases the latency. For 
larger systems their is need for more data transfers between 
the GPU memory and the ram memory, fact that explains the 
decrease in the performance of the algorithm.  
 
 
 

 

 

 

 

 

VI. CONCLUSSIONS 
In this paper we describe the GPU parallelization of 

novel SD and DPD algorithms of molecular systems 
simulations.  The new algorithms were developed by the 
Molecular Dynamics Group of the University of Groningen. 

Integrator Water (3200 
particles) 

Water (6400 
particles) 

Water(102400 
particles) 

SDNew 1 processor: 
259.01 ns/day 
2 processors: 
576.05 ns/day 
4 processors: 
1080.1 ns/day 
NVIDIA: 425.33 
ns/day 
Temperature: 
314.97 K 

1 processor: 
117.851 ns/day 
2 processors: 
246.88 ns/day 
NVIDIA: 184.898 
ns/day 
Temperature: 
315.37 K 

1 processor: 
7.606 ns/day 
2 processors: 
16.318 ns/day 
 
NVIDIA: 7.877 
ns/day 
Temperature: 
314.916 

ISO 1 processor: 
238.16 ns/day 
2 processors: 
520.34 ns/day 
NVIDIA: 410.75 
ns/day 
Temperature: 
314.31 K 

1 processor: 
108.91 ns/day 
2 processors: 
220.68 ns/day 
NVIDIA: 181.122 
ns/day 
Temperature: 
314.88 K 

1 processor: 6.57 
ns/day 
2 processors: 
14.13 ns/day 
NVIDIA: 7.778 
ns/day 
Temperature: 
314.889 K 

DPDPar 1 processor: 
234.27 ns/day 
2 processors: 
516.55 ns/day 
NVIDIA: 409.682 
ns/day 
Temperature: 
314.332 K 

1 processor: 
103.67 ns/day 
2 processors: 
215.85 ns/day 
NVIDIA: 181.484 
ns/day 
Temperature: 
314.679 K 

1 processor: 5.87 
ns/day 
2 processors: 
12.24 ns/day 
NVIDIA: 7.772 
ns/day 
Temperature: 
314.646 K 

DPDPer 1 processor: 
224.15 ns/day 
2 processors: 
527.67 
ns/dayNVIDIA: 
408.804 ns/day 
Temperature: 

1 processor: 
101.13 ns/day 
2 processors: 
213.17 ns/day 
NVIDIA: 181.006 
ns/day 
Temperature: 

1 processor: 5.34 
ns/day 
2 processors: 
11.45 ns/day 
NVIDIA: 7.790 
ns/day 
Temperature: 
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The algorithms were parallelized on the Gromacs/OpenMM 
software for molecular dynamics. 

The performances of the algorithm have been 
compared with the performances of the code on one, two and 
four processors. It can be observed that the performance 
obtained on the GPU is greater than on a single processor, but 
not equivalent with two processors. Comparing the ns/day 
obtained for one processor, for two processors and on 
NVIDIA, it can be noticed that the performance on NVIDIA is 
increased with almost 70% comparing to one processor.  This 
happens on systems with less than 80000 particles. For larger 
systems the performances on NVIDIA card start to be  
comparable to just one processor. Similar  conclusions for 
larger atomistic systems were drawn for other MD algorithms 
on GPU in literature (see for example [1]). It can be concluded  
that the parallelization through the use of graphical cards 
improves the performances of the runs as compared to the 
serial version of the code. More improvements are possible for  
the case of larger atomistic systems.  Second, although the 
GPU performances were slower than running on two cores,  
the described work opens the way for getting the new 
algorithms on GPU, which for other molecular systems is 
expected to give better results as compared with more cores 
runs. 

 As future work, the new code, representing the 
implementation of the integrators, will become a plug-in that 
the developing research group of OpenMM from Stanford 
wants to integrate into the library, in order to be used world 
wide. 
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