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Abstract—Most proteins express their functions by binding
with other proteins or molecular compounds called ligands. The
local portion involved in binding is called a binding site. The
characteristics of the binding site often determine the function
of the protein, so clarifying the location of the binding site of the
protein helps analyze the function of proteins. Binding sites that
bind to similar ligands often have common surface structures.
Such common structures are called surface motifs. Therefore,
extracting the surface motifs among several proteins with similar
functions improves binding site prediction.

We propose a method of predicting binding sites by extracting
the surface motifs that are frequently observed in only a specific
group, which means a set of proteins that bind to the same ligand.
Since most binding sites have concave structures called pockets,
the pockets are compared and common structures are searched
for to extract the surface motifs by applying similar graph mining
to the pocket data, which are represented as graphs, to find the
frequent subgraphs among the pockets of several proteins. In
addition, the common binding sites across several groups can be
predicted in such a way to integrate more than one group.

Applying our proposed method to a set of 37 proteins of five
groups, we achieved success rates of binding site prediction over
40% and 50% for more than half of the groups without group
integration and using integration, respectively.

Index Terms—protein surface comparison, binding site extrac-
tion, graph mining.

I. INTRODUCTION

The functional analysis of proteins is important for revealing
the mechanisms of living bodies. Most proteins express their
functions by binding other proteins or molecular compounds
(ligands). The local portion involved in binding is called a
binding site that has specific features of 3D structure and prop-
erties [1]–[4]. The features on binding sites often determine
the function of the protein. Clarifying what part is the binding
site in a protein and what are its features has improved the
analysis of the function of proteins.

The binding sites of proteins that bind to the same ligand
often have specifically common surface structures. Such sur-
face structures, which are called surface motifs [5], [6], are
considered candidates for binding sites. We propose a method
of predicting binding sites by extracting the surface motifs
that are frequently observed in a group, which means a set of
proteins that bind to the same ligand.

Most binding sites have concave structures, which we call
pockets. In our method, the pockets are compared and common
structures are extracted by applying similar graph mining to

the pocket data represented as graphs and finding the frequent
subgraphs among the pockets of several proteins. Even if
similar structures are frequently observed in the proteins in
a particular group and also frequently in the proteins in other
groups, we cannot regard them as significant surface motifs.
We introduce a score function for evaluating the specificity of
the extracted subgraphs to a particular protein group in which
both the inter-group frequency and the intra-group frequency
of similar subgraphs are considered.

Most existing methods compare the structures of proteins by
focusing on the residues or the atoms of the protein’s structure
[7] to find motifs by searching for commonly frequent local
structures [5], [6]. Recently, a number of methods for predict-
ing binding sites from protein surfaces have been proposed. In
these methods, geometric and/or physical features of binding
sites themselves are often employed to identify the binding
sites [8]–[11]. In our method, however, we try to find the local
surfaces that not only characterize a group of proteins binding
to the similar ligands but also distinguish this group from other
groups.

Our method basically assumes that the similar structures
regarded as binding sites in a particular group are rarely
observed in other groups. However, the structures of the
binding site are not always common only in a single group but
may be similar in other groups. From this point of view, several
groups with similar binding sites must be integrated to improve
the accuracy of the binding site prediction. In our method,
several groups, which are selected from the combination of
all groups, are integrated and regarded as one group, if the
variance of the values of the score function increases.

The objectives of our work are

∙ introducing a framework for representing shape and prop-
erties of protein surfaces by using graphs,

∙ formulating a graph mining algorithm for discovering
subgraphs that distinguish a part of graphs from a number
of graphs, and hereby,

∙ developing a method for predicting binding sites with
high accuracy.

Additionally, we try to improve its prediction accuracy by
introducing group integration.
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II. METHOD

A. Molecular surfaces and their graph representation

We use the protein molecular surface data provided by
the eF-site1 database. In eF-site, protein surface data are
constructed from a number of triangular polygons. Each vertex
of the polygons corresponds to a very small local portion of
the molecular surface that has such structural and physical
attributes as position (3D coordinates), normal vectors, elec-
trostatic potential, and hydrophobicity. Neighboring vertices
are connected by edges. Therefore, the molecular surface
data in an eF-site can be regarded as an undirected graph
with attributed vertices, suggesting that we can employ graph
mining algorithms to find frequently observed local surfaces.

B. Outline of binding site extraction

Since the structure of the binding site tends to be conserved
on the surfaces of the proteins, it may be similar among
proteins that have the same ligand partner. The surface mo-
tifs refer to the local portion of the protein surface that is
frequently observed among the proteins with the same ligand
partner but is rarely observed among proteins with different
ligand partners. These motifs are candidates for the binding
sites.

Most binding sites appear on the protein’s surface, espe-
cially in a pocket. To reduce the computation cost, in our
method, we extract them not from the entire surface but only
from the pockets.

In binding site prediction, the inputs are the surface data
of a target protein, from which the binding site should be
extracted, the surface data of the proteins that bind to the
same ligand as the target protein binds, and the surface data
of the proteins that bind to different ligands. These proteins
have been classified into several groups based on the types
of ligands. The proteins except the target protein, are called
referential proteins. The outputs are the pockets that have
surface motifs.

Binding site extraction consists of the following three steps,

1) Extract the pockets from the protein surface data.
2) Search for surface motifs by similar subgraph mining.
3) Score the pockets.

Figure 1 shows an outline of these steps.
The first step is the extraction of the pockets of the target

and referential proteins. The CASTp algorithm [12] is utilized
to create the pocket data. The CASTp server can provide
the information of atoms that correspond to the pockets that
are extracted from the protein structure data. Moreover, graph
representation corresponding to each pocket can be generated
by enumerating the vertices of the polygons located near the
atoms provided by the CASTp server. The second step is
searching for the surface motifs in the pockets of the target
protein by referring to the pockets of the referential proteins.
The motif search is achieved by comparing the pockets of
the target protein and the referential proteins. To compare the

1http://ef-site.hgc.jp/

Fig. 1. General flow of binding site extraction

pockets, they are represented as graphs and similar subgraph
mining is applied. Finally, each pocket of the target protein is
scored based on the frequency of the subgraphs that appear in
positively referential proteins (the proteins binding to the same
ligand as the target protein) or negatively referential proteins
(other proteins).

C. Extraction of surface motifs

To discover the common structures in the pocket of the
target protein to the pockets of several referential proteins,
the pockets of the target and referential proteins are compared
and their similarity is evaluated. However it is difficult for
all the vertices included in the pockets to have a one-on-
one correspondence by global structural alignment. Therefore,
in our method, we compare pockets by finding common
subgraphs extracted from the pockets of several proteins.

To compare two graphs of pockets, the attribute values
(structural data and physical properties) attached to the vertices
are compared and a pair of vertices whose attribute values are
similar is regarded as similar vertices. The vertices connected
to the similar vertices are also compared to determine whether
they are similar. Thus, similar subgraphs are extracted by
extending similar regions, i.e., the set of similar vertices
connected by edges.

We utilize gApprox, which is one popular graph mining
algorithm, to extract the pattern of similar regions [13]. The
pocket graphs of the target and referential proteins are given
and the subgraph of the pocket of the target protein that
resembles the subgraph of the referential proteins are searched
for by extending the pattern.

The following steps show the detailed algorithm for extract-
ing similar subgraphs using gApprox:

1) Let 𝑃𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑁} be a set of the pockets of
target protein 𝑇 , let 𝑃 𝑖

𝑅 = {𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑁} be a set
of the pockets of referential protein 𝑅𝑖 extracted from
the set of referential proteins 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑀},
let 𝐺𝑡 be a graph representing pocket 𝑡 ∈ 𝑃𝑇 , and let
𝑉 𝑡 = {𝑣𝑡1, 𝑣𝑡2, . . . , 𝑣𝑡𝑛} be a set of vertices constituting
𝐺𝑡. Each vertex 𝑣𝑡𝑗 is assigned an ID number 𝐼(𝑣𝑡𝑗).
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2) A vertex with a minimum number is denoted by

𝑣𝑡𝑚𝑖𝑛 = {𝑣𝑡𝑗 ∣min
𝑗

𝐼(𝑣𝑡𝑗), 𝑣
𝑡
𝑗 ∈ 𝑉 𝑡}. (1)

A subgraph of pocket 𝑡 consisting of only one vertex
𝑣𝑡𝑚𝑖𝑛 is denoted by 𝑔𝑡. Let 𝑉 𝑟 be a set of vertices consti-
tuting graph 𝐺𝑟 of pocket 𝑟 ∈ 𝑃 𝑘

𝑅 of referential protein
𝑅𝑘. 𝑉 𝑅(𝑣𝑡𝑚𝑖𝑛), which is a set of vertices 𝑣𝑟𝑗(𝑣

𝑡
𝑚𝑖𝑛) in

the pockets of the referential proteins similar to 𝑣𝑡𝑚𝑖𝑛

denoted as follows, is searched for:

𝑉 𝑅(𝑣𝑡𝑚𝑖𝑛, 𝑟) = {𝑣𝑟1(𝑣𝑡𝑚𝑖𝑛), 𝑣𝑟2(𝑣
𝑡
𝑚𝑖𝑛),

. . . , 𝑣𝑟𝑙(𝑣
𝑡
𝑚𝑖𝑛)∣𝑣𝑟𝑗(𝑣𝑡𝑚𝑖𝑛) ∈ 𝑉 𝑟,

𝑗 = 1, . . . , 𝑙}. (2)

The similarities between two vertices are calculated
by comparing their attribute values. Let 𝑒𝑣, ℎ𝑣,𝐾𝑣 ,
and 𝐻𝑣 be the electrostatic potential, hydrophobicity,
Gaussian curvature, and mean curvature of vertex 𝑣,
respectively, and 𝜎𝑒, 𝜎ℎ, 𝜎𝐾 , and 𝜎𝐻 be the thresholds of
the differences between each attribute value. 𝑣𝑟(𝑣𝑡𝑚𝑖𝑛)
is calculated by the following equation:

𝑣𝑟(𝑣𝑡𝑚𝑖𝑛) = {𝑣𝑘 ∈ 𝑉 𝑟∣∣𝑒𝑣𝑡
𝑚𝑖𝑛

− 𝑒𝑣𝑘
∣ < 𝜎𝑒,

∣ℎ𝑣𝑡
𝑚𝑖𝑛

− ℎ𝑣𝑘
∣ < 𝜎ℎ,

∣𝐾𝑣𝑡
𝑚𝑖𝑛

−𝐾𝑣𝑘
∣ < 𝜎𝐾 ,

∣𝐻𝑣𝑡
𝑚𝑖𝑛

−𝐻𝑣𝑘
∣ < 𝜎𝐻}. (3)

All vertices satisfying this equation are enumerated.
Let 𝑟𝑔𝑧𝑤(𝑔𝑡) be a similar graph of 𝑔𝑡 that exists in
pocket 𝑟𝑧𝑤 of referential protein 𝑅𝑧 and 𝑅𝐺𝑧(𝑔𝑡) =
{𝑟𝑔𝑧1(𝑔𝑡), 𝑟𝑔𝑧2(𝑔𝑡), . . . , 𝑟𝑔𝑧𝑁 (𝑔𝑡)} is a set of the graphs of
the pockets in referential protein 𝑅𝑧 that are similar to
𝑔𝑡. Let 𝑅𝐺(𝑔𝑡) = {𝑅𝐺1(𝑔𝑡), 𝑅𝐺2(𝑔𝑡), . . . , 𝑅𝐺𝑀 (𝑔𝑡)}
be a set of 𝑅𝐺𝑧 for all referential proteins, 𝑣𝑟𝑘(𝑣𝑡𝑚𝑖𝑛)
are searched for all pockets 𝑃𝑅 of all referential proteins
𝑅, and then 𝑅𝐺(𝑔𝑡) is found.
𝑔𝑡 is discarded if 𝑅𝐺(𝑔𝑡) = ∅, otherwise it is regarded
as a similar subgraph corresponding to the surface
motif. Let 𝐺𝑝 = {𝐺𝑝1, 𝐺𝑝2, . . . , 𝐺𝑝𝐿} be a set of
the groups of referential proteins and, the number of
referential proteins 𝑁𝑘(𝑔𝑡) such that 𝑅𝐺𝑤(𝑔𝑡) ∕= ∅ for
the referential protein 𝑅𝑤 that belongs to 𝐺𝑝𝑘 ∈ 𝐺𝑝
is counted with a similar subgraph as the frequency of
similar subgraphs.

3) The similarities between 𝑣𝑥 that connects to 𝑔𝑡 and 𝑣𝑦
that connects to 𝑅𝐺𝑧(𝑔𝑡) are examined. If 𝑣𝑥 and 𝑣𝑦 are
similar, 𝑣𝑥 is added to 𝑔𝑡, and 𝑣𝑦 is added to 𝑅𝐺𝑧(𝑔𝑡).
This step is done for every 𝑅𝐺𝑧(𝑔𝑡) ∈ 𝑅𝐺(𝑔𝑡).

4) 𝑔𝑡 is extended until similar graph 𝑅𝐺𝑧(𝑔𝑡) is not found
and 𝑔𝑡 is enumerated every time it is extended.

5) Steps 2-4 are iterated for all vertices 𝑉 𝑡′ =
{{𝑣𝑡1, 𝑣𝑡2, . . . , 𝑣𝑡𝑚}∣𝑣𝑡𝑚𝑖𝑛 /∈ 𝑉 𝑡′} that constitute 𝐺𝑡′,
which is obtained by removing 𝑣𝑡𝑚𝑖𝑛 from 𝐺𝑡.

6) Output all similar subgraph patterns and their frequen-
cies for every group 𝑁𝑘(𝑔) for each similar graph pattern
𝑔 by repeating step 5 until 𝑉 𝑡 has no vertex.

All similar subgraph patterns in the pockets of the target
protein can be extracted as surface motifs in the target protein
by these steps.

D. Scoring the pockets

All the surface motifs, which are the subgraphs of the
pockets, are extracted using the above algorithm, but not all
the extracted surface motifs are important.

Even if the extracted surface motifs can be observed in
referential proteins that bind the same ligand as the target
pockets, some may not be binding sites if they are also
observed in the other referential proteins that bind different
ligands.

We introduce a method of evaluating each pocket 𝑝ℎ
(ℎ = 1, 2, . . . ,𝑀) that is extracted from target protein 𝑇 by
subgraph mining. Let 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑁} be a set of groups,
let 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝐿} be a set of extracted surface motifs,
and let 𝑛𝑘 be the size of each surface motif 𝑆𝑘 that is defined
as the number of the vertices of 𝑆𝑘. The following observation
must be considered to identify the surface motifs as binding
sites.

∙ Binding sites tend to have surface motifs that are com-
monly observed in group 𝑔𝑖 which 𝑇 is classified into
but are rarely observed in other groups 𝑔𝑗(𝑗 ∕= 𝑖, 𝑗 =
1 . . . 𝑁).

∙ The large size of surface motifs is more appropriate for
a binding site than one that happens frequently in a very
small region.

The scoring function is defined as:

𝜓(𝑆𝑘, 𝑔𝑖) =
𝐹𝑔𝑖(𝑆𝑘)

𝐹𝑔𝑗 ∕=𝑔𝑖(𝑆𝑘) + 𝑏
× 𝑛𝑘. (4)

𝐹𝑔𝑖(𝑆𝑘) means the frequency of the proteins that have surface
motif 𝑆𝑘 out of the proteins in group 𝑔𝑖 where 𝑇 belongs,
𝐹𝑔𝑗 ∕=𝑔𝑖(𝑆𝑘) means the frequency of the proteins that have 𝑆𝑘

out of the proteins in group 𝑔𝑗 other than 𝑔𝑖, and 𝑏 is a constant
value for numerical stability.

This equation can give high scores to the large surface
motifs that are frequently in 𝑔𝑖 and infrequently in 𝑔𝑗 . The
following equation calculates 𝛾(𝑝ℎ, 𝑇 ); the score of pocket
𝑝ℎ(ℎ = 1, 2, . . . ,𝑀) of 𝑇 is based on the surface motif with
the highest score:

𝛾(𝑝ℎ, 𝑇 ) = max
𝑆𝑘

𝜓(𝑆𝑘, 𝑔𝑖). (5)

Pockets 𝑝ℎ are enumerated in descending order of score
𝛾(𝑝ℎ, 𝑇 ) as binding sites.

E. Group integration

Our method predicts binding sites by searching for the
surface motifs that are frequently in the same group and
infrequently in other groups, assuming no other binding site
structures are common in several groups. Generally, however,
different ligands are sometimes partially similar and then their
binding sites are often similar. Although these structures are
binding site structures, they may not be extracted because they
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are not regarded as a specific structure for the particular group
by the scoring function.

Therefore, common binding site structures in several groups
are extracted by integrating several groups into a single group.

1) Binding site prediction using group integration: In
predicting binding sites using group integration, the evalu-
ation method of the surface motifs is extended. Let 𝐼𝐺 =
{𝑖𝑔1, 𝑖𝑔2, . . . , 𝑖𝑔𝑁} be a set of groups that are targets of the
integration to group 𝑔𝑖, where 𝐼𝐺 is a subset of the set of
all groups 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑁}. Then the surface motifs are
scored:

𝜓(𝑆𝑘, 𝑔𝑖, 𝐼𝐺) =
𝐹𝑔𝑖(𝑆𝑘) + 𝐹𝐼𝐺(𝑆𝑘)

𝐹𝑔𝑗 ∕=𝑔𝑖 /∈𝐼𝐺(𝑆𝑘) + 𝑏
× 𝑛𝑘. (6)

𝐹𝐼𝐺(𝑆𝑘) indicates the frequency of the proteins that have
surface motif 𝑆𝑘 out of the proteins in group 𝐼𝐺.

The score of pocket 𝑝ℎ of target protein 𝑇 is given by the
following equation:

𝛾(𝑝ℎ, 𝑇, 𝐹𝑔𝑖) = max
𝑆𝑘

𝜓(𝑆𝑘, 𝐹𝑔𝑖 , 𝐹𝐼𝐺). (7)

2) Criterion of group integration: Some patterns of the
combination of groups to be integrated may improve predic-
tions and other patterns may degrade predictions. Therefore,
we introduce a criterion that appropriately selects the combi-
nation of groups for integration.

The variance of the scores of all pockets of the target
protein is used as the integration criterion. In integrating
several groups, if the variance is high, a large difference exists
between high and low score pockets, suggesting the existence
of surface motifs that are specific to the integrated groups. So
the variance value may be a clue to determine the appropriate
combination of groups for integration.

We define 𝑉 (𝑔), which is the variance of the scores of
all pockets from a target protein that belongs to group 𝑔, as
follows:

𝑉 (𝑔) =
1

𝑁

𝑁∑

𝑘=1

(𝛾𝑘 − 𝛾𝜇)
2, (8)

where 𝑁 means the number of pockets of the target protein
in 𝑔, 𝛾𝑘 means the score of the 𝑘-th pocket, and 𝛾𝜇 means the
average scores of all pockets.

If 𝑉 (𝑔𝑖 ∪ 𝐼𝐺) > 𝑉 (𝑔𝑖), group 𝐼𝐺 is integrated into group
𝑔𝑖.

III. RESULTS AND DISCUSSION

A. Evaluation experiment

To verify the effectiveness of our proposed method, we
experimentally extracted binding sites for the protein structural
data where their binding sites or binding ligands are known.
All experiments were conducted on a PC with a 3.40 GHz
CPU and 16 GB main memory.

B. Dataset

The dataset for the experiments was constructed by referring
to 48 protein-ligand complexes, which were used in the
reference [14] as benchmark data. 60 types of ligands from
48 complexes are listed in [14], but we only selected five
types of relatively large ligands. Proteins that bind to these
five ligands were retrieved from PDB and filtered out based
on < 30% sequence homology. Each ligand and the selected
proteins binding to it compose a protein group summarized in
Table I.

TABLE I
LIGANDS AND PROTEIN GROUPS

Ligand Protein

MTX(METHOTREXATE) 3dau,3cl9,1e7w,1d1g,1df7
BTN(BIOTIN) 3g8c,2zsc,3ew2,2c4i,2f01,1bdo,1stp

UMP1 2jar,2qch,2bsy,1seh,1f7n

STI2
3k5v,3hec,3gvu,2pl0,2oiq

1xbb,1t46,1opj,1iep

DAN3
2vk6,2f25,1z4v,1w0o,1rv0

1v3d,1usr,1sli,2qwc,1eus,2sim
1 2’-DEOXYURIDINE 5’-MONOPHOSPHATE
2 4-(4-METHYL-PIPERAZIN-1-YLMETHYL)-N-[4-METHYL-

3-(4-PYRIDIN-3-YL-PYRIMIDIN-2-YLAMINO)-PHENYL]-
BENZAMIDE

3 2-DEOXY-2,3-DEHYDRO-N-ACETYL-NEURAMINIC ACID

C. Binding site prediction without group integration

Binding site prediction was conducted for binding site
known proteins under the assumption that their binding sites
are unknown. The scores of the pockets of the target protein
were calculated and the prediction success was evaluated to
determine whether the top ranked pocket or the top three
pockets are true binding sites. Fig. 2 shows the accuracy of
the binding site prediction. The horizontal axis indicates the

Fig. 2. Success rate of prediction

name of five ligands, each of which corresponds to a protein
group. For each group, one protein was selected and regarded
as the target protein. The rest of the proteins in the same group
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and the proteins in other groups are regarded as referential
proteins. The success rate means the rate of successful proteins
for binding site prediction out of the proteins in the group.

Fig. 2 shows that the binding sites were predicted with the
highest score for about 40% of proteins in groups MTX and
BTN. For group STI, almost all binding sites were successfully
extracted. However, the prediction completely failed for group
UMP. On the other hand, the success rates in the top three
predictions exceeded 60% for all the groups and 80% for more
than half.

D. Binding site prediction using group integration

To predict binding sites, the group to which the target
protein belongs is integrated with other groups, and the target
protein is assumed to belong to that group.

The results of binding site prediction with group integration
were performed based on the criterion mentioned in Section
II.E. A comparison of the results of the binding site prediction
with and without group integration is shown in Fig. 3.

Fig. 3. Comparison of success rates of prediction with and without group
integration

The gray bar on the vertical axis indicates the success rate of
the binding site prediction without group integration, and the
red bar indicates the success rate of the binding site prediction
using group integration. For the top prediction, the success
rate for DAN slightly worsened by integration, but the success
rate for the other groups improved or remained high. This
may indicate that the automatic integration of groups improves
prediction accuracy.

IV. CONCLUSION

We proposed a method of extracting the binding sites of
proteins using 3D structural and classification information. To
extract binding sites, the inputs are pockets that are compared
to find the surface motifs by representing them as graphs and
applying similar subgraph mining.

The score function, which can extract the surface motifs that
are frequently observed among several proteins in the same
group and are rarely observed among the proteins in the other
groups as binding sites, achieves favorable prediction results.

In addition, we confirmed that the framework of the group
integration improves prediction accuracy.

While our method can remove universally observed similar
local surfaces from the candidates of binding site, true binding
sites may also be discarded if the size of data sets is small,
which is one of drawbacks of our method.

Therefore, a future challenge is to enlarge our dataset. This
paper only shows the prediction results for five protein groups.
Increasing the number of groups also increases the number
of combinations of group integration, which may improve
prediction. In addition, we will compare the proposed method
with other methods through experiments with large scale data
sets to confirm the effectiveness of our method in near future.
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