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Abstract — The application of an in-house developed web server 
called ChemBioServer to the filtering and selection of drug 
candidates for the inhibition of the PI3Kα protein is presented. 
1000 candidate molecules were initially selected from a virtual 
screening experiment. Those molecules were then filtered for 
steric clashes, physicochemical and toxicity properties and 
grouped into clusters using the ChemBioServer web application. 
During this filtering process, 400 compounds were rejected and 
the remaining 600 were clustered in 20 different groups, allowing 
for a more efficient visual inspection of the compounds. 
Representatives of these clusters were then selected for further 
experimental study. Four out of the seven selected molecules 
inhibited PI3Kα activity in vitro, indicating that the workflow 
described herein can be successfully applied in drug discovery. 
ChemBioServer proved to assist the post-processing application 
of top-ranked molecules resulting from a docking exercise by 
increasing the efficiency and the quality of compound selection 
that passed to the experimental test phase. 

Keywords-component; cheminformatics, virtual screening, drug 
discovery, PI3Ka.   

I.  INTRODUCTION  

The PI3Kα protein is implicated in signaling cascades, 
which lead to cell proliferation, survival, and cell growth. 
PI3Kα is one of the most frequently mutated proteins in human 
cancers and is thus an attractive target for anti-cancer drug 
discovery [1]. The application of rational, structure-based drug 
design is proven to be more efficient than the traditional way 
of drug discovery since it aims to understand the molecular 
basis of a disease and utilizes the knowledge of the three-
dimensional (3D) structure of the biological target in the 
process. State of the art structure-based drug design methods 
include virtual screening, which serves as an efficient, 
alternative approach to high-throughput experimental 
screening. In virtual screening, large libraries of drug-like 
compounds that are commercially available are 
computationally screened against targets of known structure, 
and those that are predicted to bind well are experimentally 
tested. Computer-aided drug discovery has recently had 
important successes: new ligands have been predicted along 
with their receptor-bound structures and in several cases the 
achieved hit rates (ligands discovered per molecules tested) 
have been significantly greater than with high-throughput 

screening [2]-[4]. Up to now, several chemical compound 
databases have been developed, including Zinc, PubChem, 
Chembank and many others [5]-[7]. Nevertheless, online 
open-access web applications for compound mining are 
limited in number and, importantly, in pipeline integration 
level. Another rate-limiting step in computer-aided drug 
design is often the final selection of compounds to be tested 
experimentally. The selected compounds should possess 
favorable computed binding affinities and at the same time be 
devoid of unwanted characteristics such as intra-ligand steric 
clashes, undesirable physicochemical properties, and toxic 
moieties [4].  

To overcome these limitations during the virtual screening 
process, we have developed the ChemBioServer [8] in order to 
enhance the effectiveness of the virtual screening process. 
Herein, we describe a virtual screening workflow to identify 
novel inhibitors of the H1047R mutant form of PI3Kα 
frequently found in human cancers. The workflow 
incorporates the use of ChemBioServer, a free web-based 
application, which enables the efficient final selection of 
compounds to be tested experimentally. 

II. MATERIAL AND METHODS 
The crystal structure of the mutant H1047R PI3Kα (PDB 

ID: 3HIZ) was complemented for missing parts using a 
combination of homology and loop modeling in order to create 
the full atomistic model of the full-length H1047R mutant. The 
Modeller software 9v8 was used for homology and ab initio 
loop modeling [9]. For the parts of the protein that required 
homology modeling, the human WT protein (PDB ID: 2RD0 
and 2ENQ) was used as a template. The resulting model was 
solvated in water and employed in Molecular Dynamics (MD) 
simulations using the NAMD package [10]. The CHARMM22 
force field [11] and [12] was used to model all protein 
interactions and the TIP3P model [13] was used for water. The 
solvated protein system was energy-minimized and gradually 
heated from 0 to 310 K with constraints of 1 kcal mol-1 Ǻ-2 
applied on the backbone protein atoms under constant volume. 
An equilibration run was then performed under constant 
pressure and constant temperature. Non-bonded forces were 
calculated with a 2-fs time step and a 12 Ǻ cut-off using the 
CHARMM switch potential between 10-12 Ǻ. Bonds involving 
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hydrogen were kept rigid by using the SHAKE algorithm [14] 
for the protein and the SETTLE algorithm [15] for water. 
Periodic boundary conditions were applied and the Particle 
Mesh Ewald method [16] was used to calculate electrostatic 
interactions every 4 fs. The pressure was maintained at 1 atm 
with the Langevin piston method [17], while the temperature 
was maintained at 310 K by means of Langevin dynamics with 
a damping coefficient of 5 ps-1. Atomic coordinates of the 
systems were saved every 2 ps. The total simulation time was 
70 ns.  

Following the simulation, binding site analysis was 
performed using the SiteMap module of Schrodinger v2.4 [18] 
on the protein conformation corresponding to the last frame of 
the trajectory (70 ns). An allosteric binding site close to the 
H1047R mutation was found by SiteMap to be among the top-
ranked potential receptor binding sites and was used in the 
present study. After binding site identification, we performed 
virtual screening using the docking program Glide 5.7 
(Schrodinger, LLC) [19] - [20]. In the process of virtual 
screening, initially, the all-atom protein model was submitted 
to a series of restrained, partial minimizations using the OPLS-
AA force field within the “Protein Preparation” module of 
Glide. A benzene molecule was placed in the predicted binding 
cavity and was used for the “Grid Generation” module of 
Glide, which prepares a grid for ligand docking. For the protein 
preparation, grid generation, and ligand docking procedures, 
the default Glide settings were used. The van der Waals (vdW) 
radii for nonpolar ligand atoms were scaled by a factor of 0.8, 
thereby decreasing penalties for close contacts. Receptor atoms 
were not scaled. The drug-like subset of the HitFinder 
collection from the Maybridge database (www.maybridge 
.com) was used for the virtual screening [4]. All structures 
were docked and scored using the Glide standard precision 
(SP) mode [20]. The 10,000 top-ranked structures from the SP 
filter were redocked and rescored using the Glide extra 
precision (XP) mode [21]. The complexes for the top-ranked 
1000 compounds resulting from the XP processing were 
submitted to further postprocessing with the ChemBioServer.  

The ChemBioServer web application is divided into six 
main sections: (i) basic search, (ii) filtering, (iii) advanced 
filtering, (iv) clustering, (v) customized pipeline and (vi) 
visualization of compounds' properties. The application back-
end is developed in R programming language (http://cran.r-
project.org/), while the front-end is implemented with PHP 
(http://www.php.net/). 2D and 3D display of compounds is 
accomplished by means of the open-source Java viewer for 
chemical structures JChemPaint (http://jchempaint.github. 
com/) and Jmol (http://jmol.sourceforge.net/), respectively. 
Compound Fingerprints are generated with Open Babel (http:// 
openbabel.org/wiki/Main_Page). Briefly, the ChemBioServer 
provides the following functionalities. The ‘Basic Search’ 
section enables the researcher to browse the contents of a 
compound file that is uploaded to the server. In the ‘Filtering’ 
section, compound mining can be performed based on a variety 
of chemical properties, such as the Lipinski Rule of Five or 
custom-made filters. In the “Advanced Filtering” section, 
compounds with steric clashes can be discarded using the vdW 
filtering by means of energy and radii tolerance. Also, 

compounds with toxic or unwanted chemical groups can be 
filtered out. The ‘Clustering’ section includes a classical 
(hierarchical) as well as a modern clustering (affinity 
propagation) algorithm. Visualization of clusters is also 
available as a dendrogram plot in PDF format. Graphical 
representations of molecular properties (i.e. PSA, logP, etc.) 
can be implemented by means of the Raphaël javascript library 
(http://raphaeljs.com/) using principal components analysis. 
Finally, a pipeline workflow that combines all or part of the 
previously described filtering services is provided by the 
ChemBioServer.  ChemBioServer is running on a quad-core 
Intel Xeon Processor E5420 server with 18GB RAM. 
Indicative computational time, using an sdf file containing 557 
compounds (Test Set 4 available in Example Data webpage 
section), for vdW filtering was 1.5min, for toxicity filtering 
was 2min and for AP was 1 min. 

To post-process docking results in order to enhance the 
experimental hit rate, several functionalities of the 
ChemBioServer were used. Initially, the vdW filtering was 
applied to remove compounds with steric clashes. Poses that 
are far from the energy minimum are unlikely to be adopted in 
nature and hence should be discarded. In this docking exercise 
with Glide we observed that the post-docking poses often 
suffered from vdW clashes; even after Glide post-docking 
minimization, approximately 20% of the generated poses 
should be discarded due to unrealistic vdW interactions. The 
compounds that passed vdW filtering were then subjected to 
physicochemical property filtering based on the Jorgensen rule 
of 3 [22] as well as toxicity filtering based on a database 
available in ChemBioServer, which contains known toxic 
moieties. These filters were not applied in the initial database 
as compounds with very high docking scores and a few 
liabilities, e.g. a toxic moiety, may be considered for 
optimization and/or as a starting point for de novo design. 
Subsequently, a hierarchical clustering was performed for the 
remaining compounds using the Tanimoto coefficient and the 
Ward Clustering Linkage. Finally, the resulting clusters were 
visually inspected and the most promising compounds were 
purchased and submitted to in vitro assay testing. The process 
is described in Fig 1. 

 
Figure 1 Workflow of Virtual Screening process using the ChemBioServer 
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Figure 2 Workflow of the PI3Kα virtual screening process by means of the ChemBioServer 

III. RESULTS AND DISCUSSION 
MD simulations of the PI3Kα protein, a common target in 

cancer, were performed starting from its crystal structure. 
Binding site identification on the last frame of the MD 
trajectory revealed an allosteric binding site, which was further 
used to perform a docking exercise for the identification of 
PI3Kα inhibitors. Virtual screening results were then post-
processed with physicochemical, toxicity, and structural filters 
in order to enhance the efficiency and accuracy of the docking 
exercise. Initially, the 1000 top-scored compounds were 
filtered for steric clashes, using the vdW filtering available in 
ChemBioServer using a threshold energy of 50 kcal/mol, 
which resulted in 250 rejected poses. The remaining 750 drug 
candidates were subjected to physicochemical/toxicity filtering 
and the 600 accepted compounds were grouped in clusters via 
hierarchical clustering using Simple Matching Coefficient 
(Jaccard / Tanimoto Coefficient), Ward Clustering Linkage and 
distance 0.8 (see Fig. 2). The clustering resulted in twenty 
clusters. Maximum one compound per cluster was selected by 
visual inspection based on a) important ligand interactions with 
key residues of the binding site and b) promising predicted 
physicochemical properties. Finally, seven of the most 
promising compounds were purchased. The compounds were 
tested with in vitro assays and four inhibited PI3Kα activity in 
micromolar concentrations, achieving a 57% hit rate and 
indicating that the workflow described herein can be 
successfully applied to enhance the hit rate of in silico drug 
discovery. 

IV. CONCLUSION 
A virtual screening experiment was performed on the 

PI3Kα protein, a known cancer target. The resulting top-scored 
compounds were subjected to structural, physicochemical/ 

toxicity, and clustering filters within the ChemBioServer web 
application. Compounds were finally visually inspected and the 
most promising ones were purchased. Four out of the seven 
purchased molecules inhibited the PI3Kα protein activity in 
vitro in micromolar concentrations, indicating that the 
workflow described herein can be successfully applied in drug 
discovery.  
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