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Abstract—A considerable research effort has already been
put on the identification (and consequently filtering) of local
segments of “unusual” composition (Compositionally Biased or
Low Complexity Regions; CBRs or LCRs) in protein sequences.
This interest was mainly initiated due to the fact that CBR
existence is known to create artifacts (i.e. biologically irrelevant
hits) in sequence database search methods. Even though no
general biological significance has been demonstrated for CBRs
so far, they are often associated with the lack of regular structure.
However, application of commonly used methods for CBR detec-
tion illustrates that instances of CBRs can be found in proteins
with experimentally determined three dimensional structures. In
this work, we highlight sequential properties of CBRs detected by
two of the most widely used CBR detection algorithms in carefully
compiled datasets of proteins with experimentally determined
structures. Our goal is to shed light on the properties of CBR
sequences, with the future prospect of elucidating their relation
to protein three dimensional structure.

I. INTRODUCTION

For practical purposes, protein sequences are often con-
sidered to be random sequences composed by the twenty
standard amino acid types [1],[2]. However, there exist protein
sequences containing local segments of “unusual” amino acid
composition [3], showing preference in the appearance of a
subset of amino acid residues (typically one or a few residue
types). Depending on the formalism used to lead to their detec-
tion these local segments are called Low Complexity Regions
(LCRs) [4] or Compositionally Biased Regions (CBRs)[5]1.
Another working definition for CBRs is ‘Simple Sequences’
[6], and Huntley and Golding (2002) described this subset
as the perfect repeats of a single amino acid, observing their
excess in eukaryotes but not in prokaryotes [7]. However,
Simple Sequences are considered as a subset of the Low
Complexity Sequences ([6], [8]) and will not be explicitly
considered in this work.

CBRs often tend to conform into non-globular structures
making it difficult to solve with usual experimental proce-
dures [3], [4], [7]. Interestingly, several research groups have
identified CBRs to be correlated (although not perfectly) to
structural disorder [9], [10]. Regarding the functions of CBR
proteins, there have been some early reports [3], [4], where
a few examples of CBR proteins and their functions are pre-
sented. More recent works have focused on functional features

1Albeit the fact that these terms are not necessarily synonymous, they will
be used interchangeably throughout this manuscript.

of proteins with either specific types of homopolymeric runs
[11] or (approximate) repeats [12] which, however, are not
necessarily CBRs.

Two of the most popular approaches for identifying CBRs
in amino acid sequences are SEG [4] and CAST [5]. SEG
is essentially a two-pass algorithm based on information
content (quantified using Shannon Entropy [13]): during the
first pass, SEG identifies candidate CBRs with information
content below a predefined threshold by scanning fixed-sized
window segments of the query sequence; then, it optimizes the
detected segments by merging neighboring candidates using a
probabilistic approach and a more relaxed information content
threshold. On the contrary, CAST is conceptually relying on
the detection of unexpectedly high similarities of the query
sequences to any of the possible homopolymeric amino acid
sequences, using an iterative dynamic programming-based
procedure. Early comparisons of these two algorithms [5], [14]
illustrated the superiority of CAST when applied as a filter
prior to BLAST searches; this finding can be clearly attributed
to CAST’s selective detection (and masking) properties com-
pared to the more “aggressive” nature of CBR detection with
SEG.

Our research goal is to investigate different properties of
CBR instances in proteins with experimentally determined
structures, in order to set the stage for more elaborate analyses
of the structural impact of CBRs. Along these lines, we care-
fully collected representative protein sequence datasets and
subsequently applied SEG and CAST with different settings
for detecting CBRs. Herein, we report on the statistical fea-
tures of sequential properties of CBRs, such as the frequency
of proteins with a CBR (CBR proteins), the CBR length
distributions and the types of CBRs.

II. DATA AND METHODS

A. Protein Sequence Data

In the context of a larger project related to the detailed
study of the structural properties of CBRs, we compiled a
dataset consisting of high resolution protein structures solved
by X-Ray crystallography from the Protein Data Bank (PDB,
[15]). In our analysis it is essential to only include protein
sequences sharing sequence identity below a certain threshold;
this approach practically ensures that we will end up with a
unique (or a few) representative(s) of each protein family, thus
removing redundancy. PISCES is a protein sequence culling
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server, which offers subsets of protein sequences selected from
the entire PDB according to structure quality and a maximum
level of acceptable pairwise sequence identity [16]. We down-
loaded a pre-compiled non-redundant dataset from the PISCES
website (2210 polypeptide chains after quality control; access
date: 2/9/2009) using the following criteria: 30% sequence
identity, resolution ≤ 1.6Å and R-factor ≤ 0.25.

As a more generic representative of the protein sequence
universe, we used a UniProtKB [17] subset based on the
reviewed (Swiss-Prot) entries, reduced for sequence similarity
at the 50% pairwise identity level (UniRef50). This was
achieved through the UniProtKB web site (139448 polypeptide
chains; access date: 22/10/2010). Further reduction of UniProt
entries to the same level of sequence identity with PDB entries
was not practical in terms of computational workload and was
consider a minor issue.

We have questioned the suitability of the dataset collected in
a similar work [18], since we deemed that the sequence collec-
tion and redundancy removal procedures followed therein were
not appropriate. Based on the description of the procedure
given by these authors, we initially downloaded a set of
PDB entries sharing no more than 30% sequence identity
utilizing the “Advanced Search” tool on the PDB website,
with a limit on “Deposit Date” up to 2/1/2007 (date of
publication of [18]). Sequence chains in this dataset were
further separated according to the experimental method used:
X-Ray crystallography or NMR spectroscopy. The respective
FASTA sequence files were also downloaded from the PDB
website using the “FASTA file Download” tool (27604 and
1776 protein sequences, respectively). The NMR dataset was
not used in our work, since we only concentrate on structures
solved by X-ray crystallography. In order to perform the CBR
analysis we further reduced the X-ray dataset (as instructed in
[18]) by removing all chains with length below 41 amino acids
and all proteins with only alpha carbon coordinates. We ob-
served that this sequence dataset further contained sequences
corresponding to RNA/DNA subunits2 and we removed them
as well. After these initial data cleansing steps the filtered
dataset (namely, XBAN) contained 20452 sequences, and
should be practically identical to the dataset used in [18].
XBAN was further reduced using a local installation of the
PISCES software using the parameters described previously,
and the reduced dataset (namely, RXBAN) contained only
1368 protein sequences, showing that the original XBAN
dataset had a large amount of redundancy.

B. Detection of CBRs and CBR proteins

Sequence datasets were provided as FASTA formatted input
files for SEG and CAST. For a given CBR detection scheme,
we define a “CBR protein” as a protein with at least one
detected CBR under the respective scheme. For the analysis
reported herein we label each CBR by a residue type. While
for CAST this label is inherent to the detection procedure [5],

2Actually, this is just one of the shortcomings of the sequence redundancy
reduction methods offered by the PDB (for more details on this procedure,
see: http://www.rcsb.org/pdb/statistics/clusterStatistics.do)

for SEG we post-process the results and assign a residue type
to the most frequent residue type in the CBR.

Both methods were employed with different parameters
(Table I) to investigate the effect of the different settings
used to detect CBRs on the CBR properties. Importantly,
a complication in the analysis stems from the existence of
Histidine tags (His-tags), often used for affinity purification
of recombinant proteins. In fact, their abundance in the PDB
dataset skews the statistics regarding CBRs (data not shown),
since more detection schemes would identify a stretch of His
residues as a CBR. Thus, special care was taken to ignore His-
tag segments from subsequent computation, without neglecting
genuine histidine rich CBRs. Moreover, several instances of
residues of undetermined type exist in sequences derived from
the PDB: these residues are usually denoted with the same
character used to mark residues in CBRs (i.e. ’X’) and we
had to also correct for this factor.

C. Statistical analysis

Standard statistical tests were employed as appropriate,
using custom Perl code interfaced to existing CPAN Perl mod-
ules. More specifically, for the nonparametric Wilcoxon Rank
Sum Test we used the Statistics::Test::WilcoxonRankSum
module. A practical problem emerged when analyzing the
huge amount of observations in the UniRef50 dataset; for
this purpose we developed a bootstrapping version of this
test. In particular, we performed the standard Wilcoxon test
using 10000 sub-datasets composed by 10000 randomly se-
lected samples with replacement from this dataset. Random-
ization was achieved by independently selecting (using the
Math::Random module) 10000 random integers in the range
[1, . . . , |UniRef50|], where |.| denotes the cardinality of a
set. In this setting, the null hypothesis (i.e. the two samples
are drawn from a single population) is rejected at significance
level α when the fraction β of tests yielding a p-value < α
satisfies β < 1− α. We can interpret the quantity 1− β as a
bootstrap p-value.

Contingency matrices are used to examine the relationship
between the observed and expected frequencies of two cate-
gorical variables, in our case the frequencies of amino acid
residue types in or out of CBRs. For this purpose, we use a
χ2 test of independence with 1 degree of freedom (available
from the Statistics::ChisqIndep module).

Assume the counts of residues from each residue type
detected in CBRs by two detection schemes correspond to
random variables X = {xi}, Y = {yi}, i ∈ {A,C, . . . , Y }.
For identifying correlations between the different levels of
masked residue types detected by different CBR detection
schemes, we calculate the Pearson Correlation Coefficient
(PCC) PCCxy =

∑
xiyi−nx̂ŷ

(n−1)sxsy
, where x̂, ŷ and sx, sy are the

observed means and standard deviations of the variables x, y
and n represents the sample size. We use PCC as an intuitive
measure of correlation, since−1 ≤ PCC ≤ 1, with PCC = 1
(−1) when x, y are perfectly correlated (negatively correlated).
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TABLE I: Parameter sets for SEG and CAST.

Algorithm Parameters Notes
SEG L=6, K1 = 0, K2 = 0 SEG6: detects homopolymers of length 6;

L denotes the window size, K2 (1) the trigger complexity and K2 (2) the extension complexity [4]
L=7, K1 = 0, K2 = 0 SEG7: detects homopolymers of length 7
L=12, K1 = 0, K2 = 0 SEG12a: detects homopolymers of length 12

Results for modes SEG6, 7 and 12a are not reported, since they detected no CBRs after correcting for His-tags
L=12, K1 = 2.2, K2 = 2.5 SEG12: mainly detects short CBRs, was BLAST default
L=25, K1 = 3.0, K2 = 3.3 SEG25: detects medium length CBRs
L=45, K1 = 3.4, K2 = 3.75 SEG45: detects longer CBRs

CAST cutoff:15, 20, 25, 30, 35, 40 substitution matrix: BLOSUM62; masking modes named using the convention: CAST[cutoff]

Fig. 1: Fraction of CBR proteins detected by different
schemes. PISCES: the non-redundant dataset explicitly col-
lected for this work; XBAN: the subset of X-ray structures
from the recollected Bannen dataset [18]; RXBAN: our re-
duced version of the XBAN dataset.

III. RESULTS

A. Frequency of CBR proteins

Inspecting CAST results, we observe an exponential decay
of the fraction of CBR proteins as a function of detection
cutoff; this observation holds both for the PISCES (this work)
and the XBAN [18] datasets (Fig. 1). It is worth mentioning
that the most permissive thresholds (i.e. 15, 20) detect most of
the proteins as CBR. It is expected that, at least for CAST15
these results could reflect global compositional effects (Fig. 2
and section III-C). Respective figures are computed for SEG,
with SEG25 detecting the highest fraction of CBR proteins
compared to the other modes (Fig. 1). It also appears that
CAST25 detects a similar fraction of CBR proteins when
compared to all SEG modes, however, we have not investigated
the overlap between the respective datasets. Notably, it is
evident that all CBR detection modes consistently detect
a higher fraction of CBR proteins in the XBAN dataset
compared to PISCES (Fig. 1), which is probably related to
the redundant nature of this dataset. When the same analysis
was performed on the RXBAN dataset (redundancy reduced
XBAN) the fraction of CBR proteins was practically identical
to the PISCES dataset (Fig. 1). This strongly indicates that
the XBAN dataset collected in [18] may not be the most
appropriate for assessing the impact of low-complexity regions
in protein structure determination.

When taking into account the absolute numbers of masked
residues detected by the different schemes, it is evident that
different CAST modes again follow an exponential decay

Fig. 2: Fraction of residues marked as CBR. See text and Fig.
1 for descriptions of the datasets.

pattern (Fig. 2). However, the figures are very different when
SEG modes are taken into account. In particular, SEG45
(which detects less CBR proteins) filters a large fraction
of residues (approx. 11% in the PISCES dataset). Clearly,
this is due to the fact that this mode detects long CBRs.
Importantly, regarding CAST15, which masks approx. 95% of
the sequences, it only filters a negligible fraction of residues
(approx. 8%), illustrating that even at this very permissive
threshold, CAST masking largely remains highly selective.
The respective figures for the RXBAN dataset were again
practically identical to those for the PISCES dataset; therefore,
all the following analyses focus into the PISCES dataset.

B. CBR length distributions in the PISCES dataset

The detailed CBR length distributions reveal that the
window-based nature of SEG drives SEG-based modes to
perform in a window length-dependent manner (Fig. 3a). On
the other hand, we observe more similarities between the
distributions for different CAST modes (Fig. 3b). The average
and median lengths of CBRs detected in the PISCES dataset
are shown in Table II.

Binning CBR lengths reveals that most of the CBRs detected
by CAST modes are less than 80 residues long (Fig. 4a). It
is worth mentioning that the maximum value of CBR length
recorded in this dataset is 457 residues long, and was reported
by all modes except CAST40. This extremely long CBR is a T-
rich domain (CAST score: 38) spanning throughout the whole
sequence (residues 5-461) of Internalin A (chain A, PDB
ID: 1O6V), a protein with internal structural repeats. Another
interesting, yet unexplained feature, is the sharp increase in
the bin 91-100, which is observed for all cutoffs tested. This
irregularity seems to mainly involve the most frequent CBR-
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Fig. 3: Detailed CBR length distributions. Distributions have
been truncated to display CBRs shorter than 96 (SEG) and
70 (CAST) residues for clarity. x-axis: CBR length; y-axis:
number of CBRs in log-scale.

TABLE II: Descriptive statistics for CBR lengths.

Detection No.CBR Average Median Standard Error
mode proteins Length Length (Mean)

CAST15 2090 14.12 9 0.21
CAST20 1386 23.52 13.5 0.65
CAST25 601 40.89 25 1.86
CAST30 300 58.77 37 3.62
CAST35 139 89.54 67 7.10
CAST40 77 109.95 92 9.96
SEG12 721 12.68 12 0.13
SEG25 747 37.80 34 0.51
SEG45 472 103.35 90.5 2.34

types (Ala-, Ser- and Thr-rich domains; data not shown).
Nevertheless, more detailed inspection is necessary to resolve
whether any biological significance exists in this finding.

An exponential decay pattern is observed for the number of
CBRs as a function of CBR length for more relaxed CAST
modes (CAST15-30). On the other hand, in SEG results it is
evident that artifacts are generated due to its window-based
detection scheme. More specifically, a clear peak for CBRs of
length 11-20 is observed for SEG12 (window length=12). For
the remaining modes this effect is still present, although to a
lesser extent, probably due to the double-pass nature of SEG
where overlapping candidate LCRs are merged.

In the detailed (un-binned) results (Fig. 3b), we observe
a sharp peak at lengths 2-6 for the more permissive CAST
thresholds (15 and 20). This observation could be initially
attributed to runs of rare residues (e.g. Cys, Trp and His) with
high self-matching scores in the BLOSUM62 matrix (C-C: 9,
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Fig. 4: Binned CBR lengths. x-axis: CBR length; y-axis:
number of CBRs in log-scale.

W-W: 11, H-H: 8). Detailed inspection of the results revealed
that this was the case: for the short CBRs (≤ 4 residues) the
number of CBRs detected for each type seems to be positively
correlated to the self-score (Table III).

TABLE III: Short CBRs (≤ 4 residues long) for different
residue types (CAST15). Bold and red characters denote rare
residue types and residue types with high counts, respectively.

Residue Counts BLOSUM62 Residue Counts BLOSUM62
(x) x-x scores (x) x-x scores
A 7 4 M 4 5
C 211 9 N 24 6
D 117 6 P 79 7
E 52 5 Q 14 5
F 89 6 R 42 5
G 200 6 S 0 5
H 310 8 T 32 5
I 10 4 V 19 4
K 21 5 W 278 11
L 12 4 Y 180 7

Regarding the distribution of CBR lengths for the UniRef50
dataset, we performed the Wilcoxon Rank Sum test (see sec-
tion II-C for details), and significant differences were detected
for all CBR detection modes at the 99.95% confidence level
for the most relaxed CAST modes (15-30) and all tested SEG
modes (bootstrap p-value = 0). Whereas for CAST35/40 the
null hypothesis cannot be rejected (bootstrap p-value = 1), a
finding which may propose that using these CBR detection
settings the length properties of CBRs in the structural dataset
cannot be distinguished from those of UniRef50. Therefore,
assuming that CBR lengths in PDB should follow a different
length distribution compared to the overall sequence database,
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it may be appropriate to avoid using these CBR detection
modes for studying CBRs in the PDB.

Further qualitative analysis was performed for the PISCES
dataset, where we observe that certain CBR types (e.g. Ala,
Ser, Thr, Gln, Lys) are detected throughout the length range,
while others (e.g. Ile, Val, Tyr, Phe) are restricted to shorter
CBRs only (≤ 50 residues long). However, more elaborate
analysis is necessary (and still under way) in order to link
this interesting finding with possible structural properties of
different CBR types.

C. Types of Compositionally Biased Regions

Analysis regarding the individual types of compositionally
biased residues was performed for all CBR detection modes
for the PISCES and UniRef50 datasets, in order to identify
whether
• CBR results reflect global compositional properties of the

datasets under study, and
• particular CBR types are favored/disfavored in experi-

mentally determined 3D structures
We compared the background frequencies of the different

amino acid residue types for the two databases: Ala, Glu,
Gly, Leu, Ser and Val are the most abundant residues in
both datasets and the rare residue types Cys and Trp are
found with relative frequencies of approx. 1%. A χ2 test of
independence (99.9% confidence level with df = 19 degrees
of freedom: χ2 = 0.7347, p-value = 1) indicates that the two
distributions are not independent. In fact, there is a strong
linear relationship between the relative frequencies in the two
datasets (y = 0.9757x + 0.0012, R2 = 0.9083), therefore,
we can practically consider that the background distributions
between the two datasets are comparable.

Using CAST, it is worth mentioning that certain CBR
types are not being detected at all or are detected in very
low numbers, this observation being more pronounced in less
permissive thresholds (25-40). Such residues include mostly
hydrophobic residues (Val, Ile, Leu, Met, Tyr, Phe), rare
residues (Cys, Trp) and Arg. An interesting observation relates
to Val and Leu, which despite the fact that they are among the
most common amino acids, they are rarely found in CBRs.
Even though we removed all His-tags (see section II-B), His
is still relatively frequently detected in CBRs in the PISCES
dataset. With all SEG modes we observe Ala, Gly, Leu and Val
to be frequently labeled as CBR residues, closely resembling
the global composition of the database.

In order to clarify to which extent average database com-
position relates to the types of residues detected in CBRs,
it is necessary to have some quantitative estimates. Towards
this end, using the average global composition of proteins in
our datasets, we investigated whether it can be identified as a
source for the detected CBRs. In particular, we performed a
χ2 test of independence (99.5% confidence level with df = 19
degrees of freedom) between the fraction of masked residue
types and the global composition. With the exception of
CAST15 (p-value=0.33) all other CAST modes demonstrated
independence to the global composition (p-values ≤ 0.01).

On the contrary, for all SEG modes the null hypothesis
(dependence) cannot be rejected at this significance level (p-
values ≥ 0.89). Therefore, it is evident that the composition
of CBRs detected by SEG are expected to reflect the average
residue content of the database.

A χ2 test of independence (99.5% confidence level with
df = 19 degrees of freedom) was performed for each pair of
CBR detection modes. For tests involving CAST15 against all
SEG modes the null hypothesis could not be rejected (data not
shown); this mode demonstrated independence only against
CAST35 and 40 (p-values: 2.95 × 10−2 and 1.73 × 10−4

respectively). Even though SEG12 and SEG25 behave quite
similar to CAST25 in terms of the total number of CBR
proteins, when the CBR types are examined CAST25 results
are significantly different. In particular, for tests involving
CAST25 against all SEG modes the null hypothesis is always
rejected (p-values ≤ 4 × 10−3). Similar results hold for all
other CAST-vs-SEG tests, whereas for SEG-vs-SEG tests data
do not support independence.

Using the Pearson Correlation Coefficient, we test whether
any correlation exists between the results obtained by different
masking modes. As a general trend, we observe that there
is higher correlation between results obtained by the same
method. For example, CAST25 has PCC ≥ 0.9 when com-
pared to the other CAST modes, whereas 0.57 ≤ PCC ≤ 0.73
when compared to SEG modes.

IV. CONCLUSION

Global compositional characteristics of nucleic and amino
acid sequences have been used as features to predict properties
at multiple levels, from the molecular (e.g. function, expres-
sion, origin) to the organismic level (e.g. niche) [19]–[23].

However, only a few systematic efforts have been made
so far in order to elucidate whether local compositional bias
contains useful information which may be exploited for similar
tasks [11], [24]. The main reasons for this shortage are:
• CBRs have been mostly dealt with as an undesirable

sequence feature (e.g. masking prior to database searches,
selecting against when seeking targets for structural ge-
nomics) and not as an informational character per se,

• divergent methods have been developed to detect local
compositional bias, based on distinct definitions with
largely different (and incomparable) results, and

• most of the aforementioned methods do not naturally
classify CBRs into different types, thus prohibiting more
detailed and informative analyses.

This work was an attempt to widen our understanding on
the local compositional properties of amino acid sequences,
with the future prospect of understanding their relation to the
protein three dimensional structure.

The substantial differences in the performance of distinct
CBR detection modes observed in our analysis opens new
questions and avenues for research, with possible applications
in target selection for current large-scale structural genomics
projects. Despite the fact that we have illustrated that the
dataset used in the a recent report [18] on the impact of
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CBRs in protein structure determination suffers from extensive
sequence redundancy, further work is necessary to illuminate
whether the main findings of this analysis should be revised.

Our results indicate that SEG, the most commonly used
method for detecting CBRs, may not be the most appropriate
tool for attempting to decipher CBR to 3D structure rela-
tionships. In particular, it seems that with this method CBR
length distributions are largely dominated by the effect of
the window-size parameter. In addition, the CBR residue type
distribution resembles the global database distribution, making
it questionable whether it will be possible to effectively
(i) identify local compositional features related to protein
crystalizability or (ii) highlight subtle structural preferences
of different CBR types using SEG.

Based on the correlation patterns of the residue types
marked as CBR, we propose that CAST, and in particular
CAST25, may be the most appropriate CBR detection mode
(upon those tested in this study) for seeking structural prop-
erties of CBRs and CBR proteins. CBR length distributions
seem to follow a consistently similar pattern, independently of
the detection threshold employed. Moreover, the distribution of
residues marked as CBRs clearly deviates from the background
frequencies, thus capturing truly local compositional extremes.

Interestingly, using CAST we identified an unexpected (and
still unexplained) depletion of hydrophobic residues in CBRs
in the structural dataset, and in particular of Val and Leu which
are among the most frequent residue types. There are several
possible explanations, such as the relatively low incidence of
transmembrane proteins in the structural database or the trend
in the avoidance of large hydrophobic surface patches, which
usually result in aggregation prone interfaces [25]–[27]. A
starting hypothesis (currently under investigation within our
group) is that CBRs of hydrophobic type could be associated
with transmembrane domains or buried hydrophobic cores in
globular proteins. Of similar interest is the detailed characteri-
zation of the structural environments of CBRs based on residue
type and length, which may provide novel tools for predicting
protein structural features from amino acid sequences.
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