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Abstract— Alzheimer’s disease (AD) is the most common type 

of dementia, greatly affecting cognitive functioning and 

independent living of elderly population. The lack of an available 

drug therapy that could prevent disease progression shifted the 

research interest towards the early detection of the 

neurodegeneration symptoms that affect the mature brain and 

impair the interaction between brain regions, thus partially 

causing functional disconnection. The notion of 

electroencephalographic complexity is a valid and reliable 

method of quantifying the degree of isolation of brain regions due 

to AD pathology. Recently permutation entropy, which is a 

methodology of transforming the signal data into symbolic 

sequences and then computing the frequency distribution of 

symbolic patterns, gained great attention and was applied in 

seizure detection and computation of consciousness.  The current 

study aims to investigate whether this complexity marker would 

be suitable to be applied in dementia research towards the 

quantification of the degree of cognitive deterioration due to 

disconnection of brain regions. The promising results indicate 

that permutation entropy on posterior regions (parieto-occipital 

areas) abnormally increases during mild dementia and is 

negatively correlated with the level of cognitive dysfunction, as 

estimated by the Mini Mental State Examination. Therefore, it 

may be a fast, accurate and simple tool for screening elderly 

population prone in Alzheimer. 

Index Terms—Alzheimer, Electroencephalography, 

Permutation Entropy, Resting State, Symbolic Analysis 

I. INTRODUCTION  

During the last decades, the substantial improvement of life 

quality and healthcare services led to an important expansion 

of life expectancy, increasing thus the portion of elderly people 

who suffer from several chronic diseases. Among the chronic 

diseases affecting senior citizens, dementia is a common one, 

posing a substantial burden not only to the patients themselves 

but also to their relatives and caregivers. The most frequent 

type of dementia is Alzheimer’s (AD). AD’s histopathological 

signature consists of the intraneural creation of neurofibrillary 

tangles and the extracellural formation of peptide-based 

plaques [1]. These neurodegeneration phenomena cause 

deficient cognitive and especially executive functioning, even 

as early as the preclinical phase of AD [2].  AD also results in a 

both structural and functional disconnection among distinct 

brain regions. It often resembles a network breakdown which 

was shown to be correlated with the degree of cognitive 

deficits of AD patients [3]. This failure of brain activity 

integration was verified by several studies and supports the 

disconnection hypothesis, partially attributed to AD [4]. The 

decreased cooperation of different neuronal assemblies is 

reflected on the brain’s electrical activity as implied by both 

synchronization and complexity measures [5], [6]. So, the 

severity of the neurodegenerative processes has been 

associated with increased complexity of the 

electroencephalographic (EEG) signals. 

Several methodologies have been proposed for the 

quantification of the EEG complexity degree. These techniques 

are mainly derived from nonlinear dynamics and information 

theory. Among them, the correlation dimension (D2) was 

frequently used to describe the brain dynamics during sleep, 

epilepsy, dementia, etc. [7], [8], [9]. It measures the system’s 

dimensional complexity, requiring huge amount of data. 

Realistic D2 applications assume signal stationarity. Aiming to 

deal with these problems the notion of Approximate Entropy 

(ApEn) was introduced [10]. The ApEn could be applied to 

short EEG segments, while it is noise-resistant. However, it 

remains time-consuming, while there is no clear insight 

regarding the selection of the parameter values involved. 

Recently, the notion of Permutation Entropy (PE) was 

introduced [11]. It is conceptually simple, resistant to noise 

contamination and does not require time consuming 
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computations, being thus extremely fast. It is based on ordinal 

time series analysis. During the last decade, it was used mainly 

in epilepsy research [12] and for the prediction of the 

anaesthesia depth [13]. To the best of our knowledge, there is 

no attempt yet to apply the PE on dementia research. 

Aiming to propose a simple, yet robust discrimination 

framework of early neurodegenerative symptoms of AD, we 

investigated the applicability of symbolic analysis and PE on 

resting state EEG data collected from elderly participants.  Our 

aim was to verify the previous results of increased EEG 

complexity on mildly demented patients and to extend those by 

highlighting the importance of a multi-scale approach for the 

detection of vulnerable brain regions and frequency bands that 

were affected by neurodegeneration. The present study aims to 

exploit the notion of symbolic ordinal analysis in order to 

introduce a simple, useful and robust tool for 

neurophysiological screening of elderly population being at the 

risk of dementia. The proposed EEG analysis framework may 

serve supplementary to the neuropsychological estimation, 

providing a direct window to the early pathological brain 

functioning due to AD. 

The remaining of this paper is structured as follows. Details 

about the experimental procedure, the EEG data acquisition 

and the permutation entropy analysis are described in the 

Methodology Section. The results of the statistical analysis are 

presented in the Result Section and their impact as well as 

study limitations are discussed in the Discussion Section. 

II. METHODOLOGY 

A. Participants 

The study included 57 elderly participants recruited from 

day care centers in Thessaloniki, Greece. They were submitted 

to a detailed neuropsychological examination to acquire a 

reliable estimation of their cognitive status and to identify 

patients suffering from mild dementia (MD). Neuroimaging 

estimation through MRI scan was also applied. The healthy 

group consisted of 29 participants (21 females), while the MD 

group consisted of 28 participants (22 females). Both groups 

were age and gender matched. Inclusion criteria were: age of 

58 and older, approval to participate from their personal doctor 

and signing an informed consent. Exclusion criteria were: drug 

or substance abuse, recent usage of cholinesterase inhibitors or 

anti-depressive drugs (less than 3 months), severe neurological 

disorder due to ischemic attack and severe mobility problems. 

This study was part of the Long Lasting Memories (LLM) EU 

FP7 funded program and served as a screening procedure prior 

to the participants’ enrollment. The LLM project proposed the 

combination of cognitive and physical exercise towards the 

enhancement of cognitive functioning and independent living 

[14]. Prior to their participation, the participants were informed 

about the research procedure and aims. Then, they had the 

chance to ask for any information regarding the study and 

signed an informed consent form. The study was approved by 

the local ethical committee. 

B. Neuropsychological Assessment 

The neuropsychological examination focused on the 

reliable detection of cognitive impairment due to mild 

dementia. Therefore, it employed the Mini Mental State 

Examination (MMSE) and the Montreal Cognitive Assessment 

(MoCA) test. The MMSE is a generic screening tool briefly 

examining memory, attention and other cognitive functions 

sensitive to dementia. It is able to detect patients suffering from 

mild dementia [15]. If combined with the MoCA test [16], the 

neuropsychological examination’s discrimination power is 

further strengthened since it could differentiate demented 

elderly from those suffering from Mild Cognitive Impairment 

(MCI). Participants were also assessed for possible depressive 

symptoms through the short form of the Geriatric Depression 

Scale (GDS), which consisted of 15 questions [17]. They were 

also assessed for several cognitive functions of crucial 

importance such as verbal memory (California Verbal Learning 

Task / CVLT) [18], psychomotor speed and executive control 

function (Trail Making Test Parts A & B / TMT A & TMT B) 

[19] and working memory through the Digit Span [20]. 

Another important aspect is the participants’ functional ability 

regarding independent living, which was measured by the 

Instrumental Activities of Daily Living (IADL) [21]. The 

participants’ life quality was subjectively estimated through the 

short version of the World Health Organization Quality of Life 

Instrument (WHOQOL-BREF) in terms of physical, 

psychological, social and environmental aspects [22]. 

 

C. Neurophysiological Data Acquisition & Pre-processing 

The neurophysiological data acquisition was performed 

with a Nihon Kohden JE-207A equipped with active electrodes 

attached on a cap fitted to the scalp. The device consisted of 57 

electrodes recording brain signals, 2 reference electrodes 

placed on the left and the right mastoids and a ground electrode 

located at the left frontotemporal borderline. The electrode 

impendances were approximately 2 ΚΩs and the sampling rate 

was at 500 Hz. The participants were instructed to sit in a 

comfortable armed chair, to close their eyes and to stay calm 

for four minutes. This resting state data acquisition was part of 

a longer neurophysiological examination. 

The electrodes of each hemisphere were re-referenced 

according to the activity of the mastoid located on the same 

hemisphere. The electrodes located on the anterior-posterior 

midline were re-referenced according to the mean activity of 

the two reference electrodes. Then, the Independent 

Component Analysis (ICA) algorithm was applied to recognize 

artifactual sources. These sources were removed in order to 

eliminate their contribution to the brain data. Then, visual 

inspection took place for rejecting short data segments that still 

were being contaminated with noise. The aforementioned 

preprocessing steps were performed through the EEGLAB 

graphic user interface [23]. 

The final dataset was visually inspected once more and 20 

seconds of continuous, high quality, artifact-free data were 

selected as an input to the PE algorithm. Since many 

participants felt sleepy during the data acquisition stage, 
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special attention was paid on the recognition of sleepy states, 

which were also rejected. Then, the ordinal, symbolic analysis 

framework was executed for each dataset. 

D. Symbolic Analysis 

The permutation entropy notion is simple, since it assigns 

to each data sample a symbol and then it organizes these 

symbols according to their relative values. Firstly, the 

embedding dimension parameter n has to be introduced. This 

parameter defines the length of the symbol sequence. For 

example, if we define the embedding dimension to be n=4, 

then the symbol sequence has a length of n+1=5, since we have 

the current symbol and its four previous neighbors. So, the 

current data sample is denoted as “a”, its immediate previous 

neighbor as “b”, etc. Let us regard the following time series:  x 

= (4, 6, 2, 3, 7). So, we have “a”=7, “b”=3, “c”=2, “d”=6 and 

“e”=4. Thus, we come up with an alphabet that consists of five 

letters. Then, a specific word is formed by sorting the five 

symbols into descending order. Regarding our example, the 

word formed is “adebc” (Fig. 1). Since, the alphabet consists of 

5 letters there are 5!=120 available words. Another important 

parameter of the PE algorithm is that of time lag r. The r 

parameter defines the alphabet’s sampling frequency (Fig. 2). 

For example, if we set r=1 then we consider consecutive data 

points, whereas in case of r=2 we regard the current data point 

(xn=”a”) as symbol “a”, we omit the previous one and we 

regard as symbol “b” the xn-2 data point. Therefore, when we 

would like to detect high frequency content we should decrease 

the value of the r parameter.  

E. Proposed Analysis Framework 

The proposed analysis adopts a multi-scale approach 

aiming to detect symbolic patterns from both high and low 

frequency spectrum. This was achieved by computing the 

permutation entropy with time lag (r value) ranging from 2 to 

50 (Fig. 2). The length of symbol sequence was set to 5, while 

each brain channel segment corresponds to 20 ms (time series 

length 10000 points). The PE algorithm executed for each 

channel signal separately and for each time point, assuming 

there is sufficient number of previous points in order to form 

the symbol sequence for each time lag. Therefore, in case of 

r=2, the first sample that could be processed is the N-(4×r+1), 

which is the 9
th

 signal. For each time series, we obtain the 

relative frequency pi of each one of the i=1…120 symbol 

sequences. It is obvious that the Σpi =1.0. Τhe permutation 

entropy notion provides a marker of the signal’s complexity by 

computing the entropy of the symbols’ probability appearance 

through the well-known Shannon’s formula: 

PE=              
                                                             (1) 

The permutation entropy values are within the range 

0≤PE≤log(120)=4.7875. A small value indicates that there are 

few symbolic sequences with high occurrence, whereas a large 

value indicates a random (complex) symbolic frequency 

distribution. 

The permutation entropy values were computed for each 

electrode and for scales ranging from 2…50 with ascending 

step of 2. Therefore, for each participant we obtained a two-

dimensional feature matrix. Each row (i=1…57) corresponds 

to a single channel location and each column (j=1…25) to a 

scale level. 

Then, a feature selection procedure took place in order to 

select the most salient features that would be potentially able 

to discriminate demented patients from the healthy, age-

matched elderly. The Euclidean distance among the mean 

value of the healthy and the demented patients for each feature 

was computed. The threshold value was set to be greater than 

0.0625 and resulted in 10 candidate features. These features 

were extracted only from the three shortest scales (r=4, 6 and 

8) and are presented in Table Ι. 

 

 

Fig. 1 Visualization of the symbol sequence formation and transformation of 

the time series data to a symbolic word 

 

Fig. 2 Visualization of the multi-scale approach and the concept of the time 
lag parameter when sampling time series data for the symbol sequence 

formation 

Table I. DESCRIPTION OF THE POTENTIAL FEATURES EXTRACTED 
FROM THE FEATURE SELECTION PROCEDURE 

Time Scale (r) Electrode Locations 

r = 4 O2, Pz, POz 

r = 6 O2, Pz, CPz, POz 

r = 8 P3, O2, Pz 

III. RESULTS 

The statistical analysis of the permutation entropy values 

involved independent t-tests. According to the analysis, 

entropy values for seven out of the ten candidate features 

differed significantly between the Healthy and the Mild 

Dementia participants, with the MD group showing 
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significantly higher entropy values than the Healthy group, as 

depicted in Table ΙΙ. 

Additionally, a stepwise regression model was employed in 

order to investigate whether MMSE scores could be predicted 

from the entropy values in any of the aforementioned PE 

features. The regression model showed that MMSE scores 

could be best predicted by the entropy in the right occipital 

electrode (time lag r=6), β= -14.464, t(46) = 2.799, p = .007. 

This entropy feature could also predict a significant proportion 

of the variance in MMSE scores, R
2
 = .125,  F(1, 55) = 7.837, 

p = .007. 

Table II STATISTICAL ANALYSIS OF THE POTENTIAL PE FEATURES. 
THE ANALYSIS INVOLVED T-TEST WITH BONFERRONI 

CORRECTION (α=0.01) 

Feature 

Name 

 

Group 

 

Mean (SD) 

t value 

(df = 55) 

 

Significance 

P3 (r = 8) Healthy 1.95 (0.11) 

2.01 (0.07) 
2.240 .029 

MD 

O2 (r = 4) 
Healthy 1.96 (0.10) 

2.02 (0.07) 
2.429 .018 

MD 

O2 (r = 6) 
Healthy 1.96 (0.10) 

2.02 (0.07) 
2.572 .013 

MD 

O2 (r = 8) 
Healthy 1.95 (0.10) 

2.01 (0.07) 
2.552 .014 

MD 

Pz (r = 6) 
Healthy 1.91 (0.13) 

1.98 (0.09) 
2.376 .021 

MD 

Pz (r = 8) 
Healthy 1.91 (0.11) 

1.98 (0.09) 
2.442 .018 

MD 

CPz (r= 6) 
Healthy 1.94 (0.11) 

2.374 .021 
MD 1.99 (0.07) 

 

Table ΙΙΙ CORRELATION ANALYSIS AMONG EACH PE FEATURE 
WITH THE MINI MENTAL STATE EXAMINATION SCORE 

PE 

FEATURES 

Pearson’s r  
Significance 

Value 

MMSE 

Left parietal (P3, r = 8) -0.327 0.006 

Right occipital (O2, r = 4) -0.338 0.005 

Right occipital (O2, r = 6) -0.353 0.004 

Right occipital (O2, r = 8) -0.303 0.011 

Medial Parietal (Pz, r = 4) -0.298 0.012 

Medial Parietal (Pz, r = 6) -0.321 0.007 

Medial Parietal (Pz, r = 8) -0.272 0.020 

Medial Centro-parietal (CPz, r = 6) -0.283 0.016 

Medial Parieto-occipital (POz, r = 4) -0.257 0.027 

Medial Parieto-occipital (POz, r = 6) -0.270 0.021 

 

Finally, correlation analysis was performed among each PE 

feature and the MMSE score. The Pearson’s r (first row) and 

the significance (second raw) values are depicted in Table ΙΙΙ. 

IV. DISCUSSION 

The current study investigated the feasibility of employing 

the notion of the PE towards the detection of the disconnection 

effects due to AD. This complexity measure was previously 

used in seizure detection [12] and in quantifying the 

consciousness level during anaesthesia [13]. These studies 

demonstrated the robustness of the PE, as well as its easiness in 

implementation instead of using time-consuming 

computations. Moreover, symbolic analysis results in a noise 

resistant methodology, since it is minimally affected by noise 

fluctuations [11]. The time lag parameter provides the 

feasibility to adjust the length of symbol sequence. Therefore, 

permutation entropy could be used for studying dynamical 

signal patterns of varying frequency content. The attractive 

properties of the ordinal symbolic analysis motivated us to 

propose for the first time, to the best of our knowledge, the 

notion of PE to be used in dementia research. Its simplicity, 

combined with the robustness demonstrated in other research 

fields, prompted our hypothesis that it could be an ideal tool for 

the efficient tracking of dynamic nonlinear brain functioning.  

The proposed study verified the previously reported results 

of increased complexity due to dementia [24], [25]. This 

finding is attributed to the disconnection among distant brain 

regions due to AD neuropathology [4]. Each brain area 

operates in isolation due to mild dementia, resulting thus in 

increased complexity (less predictability) and impaired 

cognitive functioning [25]. However, several scientific 

questions arise regarding the linkage of increased complexity 

and brain disconnection. Previous studies computed the 

signal’s complexity without considering the issue of time scale 

[25]. So, their computations considered the whole EEG signal 

without the feasibility of investigating frequency-varying and 

frequency-specific patterns. Despite the promising results, a 

deeper understanding of how AD pathophysiology affects the 

rhythmic EEG activity is needed. The multiscale approach of 

the PE enables the examination of the disconnection effects on 

each frequency band separately. Therefore, the proposed 

methodology enables us to correlate neurodegenerative 

phenomena with specific encephalographic rhythms being 

responsible for a particular brain function. According to the 

study results, posterior brain regions seem to be more 

vulnerable to abnormally increased EEG complexity [26]. AD 

is known to mainly affect areas within the temporal lobe and 

the hippocampus. However, recent functional, metabolic and 

neuroimaging findings demonstrated that during early stages of 

the disease, the parietal cortex is also affected [26]. Our results 

support this hypothesis since the findings are focused 

especially on the parietal (medial and left) and on the right 

occipital cortex. 

Another interesting issue is that the statistically significant 

results were derived from short time lags (r =4, 6, 8). These 

values correspond to the high frequency rhythmic activity (high 

gamma, low gamma and beta rhythm respectively). So, it is of 

crucial importance to understand why the increased complexity 

is mainly attributed to the fast oscillatory activity. Since the 

increased complexity is regarded to be due to impaired 

disconnection, the most probable reason for affecting the 
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gamma and beta bands is their coordinative role in sensory 

processing, attention, memory and synaptic plasticity [27], 

[28]. There is concrete evidence that high frequency oscillatory 

activity moderates the cooperation among distant brain regions 

needed for elaborate cognitive functioning. Moreover, 

reduction of beta oscillations due to EEG slowing is among the 

earlier neurophysiological symptoms of AD [27]. 

The proposed study introduced a reliable and robust 

methodology for the quantification of AD-related 

neurodegenerative symptoms. However, these initial efforts 

need to be extended prior to their application in daily 

screening. Therefore, validation of the method’s efficacy with a 

larger sample (>50 participants per group) is needed. Future 

work should also include individuals with Mild Cognitive 

Impairment (MCI). Elderly suffering from MCI face memory 

impairment of an intermediate degree in comparison with 

healthy elderly, but they maintain their abilities of independent 

living and do not fulfill the dementia criteria. Applying the 

proposed analysis framework towards the early detection of 

abnormal neurophysiological patterns during this stage may 

provide a valuable tool for identifying those with increased risk 

of transition to dementia. The identification of these patients is 

of crucial importance, since the appropriate intense cognitive 

and physical training may significantly delay dementia onset. 

Therefore, we plan to include the proposed analysis to the 

default screening procedures performed by the Greek 

Association of Alzheimer’s Disease and Related Disorders. 

V. CONCLUSION 

Concluding, the present study proposes an easy–to-

implement, fast and reliable marker of quantifying 

neurodegenerative symptoms through symbolic analysis and 

brain complexity. Except from the robust discrimination of the 

neurophysiological signs of AD neurodegeneration, the method 

demonstrated the ability to relate these markers to general 

cognitive decline as measured by the MMSE. So, it may be 

used as an index of quantifying the disease severity and may 

have an important role in dementia screening as supplementary 

to and more objective from neuropsychological examination. 

ACKNOWLEDGMENT 

This work was granted by the USEFIL ICT FP7 EU funded 

program.  

REFERENCES 

[1] B. Schönheit, R. Zarski and T. G. Ohm, “Spatial and temporal 

relationships between plaques and tangles in Alzheimer-

pathology,” Neurobiology of Aging, vol. 25, pp. 697–711, 2004. 

[2] L. Bäckman, S. Jones, A.-K, Berger, E. J. Laukka and B. J. 

Small, “Cognitive impairment in preclinical Alzheimer’s 

disease: A meta-analysis,” Neuropsychology, vol. 19(4), pp. 

520-531, July 2005. 

[3] A. L.W. Bokde, M. Ewers and H. Hampel, “Assessing neuronal 

networks: Understanding Alzheimer’s disease,” Progress in 

Neurobiology, vol. 89(2), pp. 125-133, October 2009. 

[4] X. Delbeuck, M. Van der Linden and F. Collette, “Alzheimer' 

Disease as a Disconnection Syndrome?,” Neuropsychology 

Review, vol. 13(2), pp. 79-92, 2003. 

[5] T. Koenig, L. Prichep, T. Dierks, D. Hubl, L. O. Wahlund, E. R. 

John and V. Jelic, “Decreased EEG synchronization in 

Alzheimer’s disease and mild cognitive impairment,” 

Neurobiology of Aging, vol. 26(2), pp. 165-171, February 2005. 

[6] A. Fernández, R. Hornero, C. Gómez, A. Turrero, P. Gil-

Gregorio, J. Matías-Santos and T. Ortiz, “Complexity Analysis 

of Spontaneous Brain Activity in Alzheimer Disease and Mild 

Cognitive Impairment: An MEG Study,” Alzheimer Disease & 

Associated Disorders, vol. 24(2), pp. 182-189, April/June 2010 

[7] T. Ning, A. Grare and J. Ning, “Comparing Developmental 

Changes of Hippocampal EEG During REM Sleep Using 

Correlation Dimension,” International Journal of 

Bioelectromagnetism, vol. 12(4), pp. 170-176, 2010. 

[8] H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, “A Wavelet-

Chaos Methodology for Analysis of EEGs and EEG Subbands 

to Detect Seizure and Epilepsy,” IEEE Transactions on 

Biomedical Engineering, vol. 54(2), pp. 205-211, February 

2007. 

[9] J. Jeong, J.-H. Chae, S. Y. Kim, S.-H. Han, “Nonlinear Dynamic 

Analysis of the EEG in Patients with Alzheimer's Disease and 

Vascular Dementia,” Journal of Clinical Neurophysiology, vol. 

18(1), pp. 58-67, January 2001.   

[10] S. M. Pincus, “Approximate entropy as a measure of system 

complexity,” Proceedings of the National Academy of Sciences 

USA, vol. 88, pp. 2297-2301, March 1991. 

[11] C. Bandt and B. Pompe, “Permutation entropy — a natural 

complexity measure for time series,” Physical review Letters, 

vol. 88(17), 2002. 

[12] X. Li, G. Ouyang and D. A. Richards, “Predictability analysis of 

absence seizures with permutation entropy,” Epilepsy research, 

vol. 77(1), pp. 70-74, October 2007. 

[13] D. Li, X. Li, Z. Liang, L. J. Voss and J. W. Sleigh, “Multiscale 

permutation entropy analysis of EEG recordings during 

sevoflurane anesthesia,” Journal of Neural Engineering, vol. 

7(4), 046010 (14pp), June 2010. 

[14] The Long Lasting Memories (LLM) project, 

www.longlastingmemories.eu 

[15] T. N. Tombaugh and N. J. McIntyre, “The Mini-Mental State 

Examination: A comprehensive review,” Journal of the 

American Geriatrics Society, vol. 40(9), pp. 922-935, September 

1992. 

[16] Z.S. Nasreddine, N.A. Phillips, V. Bédirian, S. Charbonneau, V. 

Whitehead, I. Collin, J. L. Cummings and H. Chertkow, “The 

Montreal Cognitive Assessment, MoCA: A Brief Screening 

Tool For Mild Cognitive Impairment,” Journal of the American 

Geriatrics Society, vol. 53(4), pp. 695-699, April 2005. 

[17] J. I. Sheikh, J. A. Yesavage, “Geriatric Depression Scale (GDS): 

Recent evidence and development of a shorter version,” The 

Journal of Aging and Mental Health, vol. 5(1-2), pp. 165-173, 

June 1986. 

[18] D. C. Delis, J. Freeland, J. H. Kramer and E. Kaplan, 

“Integrating clinical assessment with cognitive neuroscience: 

Construct validation of the California Verbal Learning Test,” 

Journal of Consulting and Clinical Psychology, vol. 56(1), pp. 

123-130, February 1988. 

[19] T. N. Tombaugh, “TrailMakingTest A and B: Normative data 

stratified by age and education,” Archives of Clinical 

Neuropsychology, vol. 19(2), pp. 203-214, March 2004. 

[20] A. Baddeley, “Working memory,” Science, vol. 255(5044), pp. 

556-559, January 1992. 

286

http://www.longlastingmemories.eu/


[21] M. P. Lawton and E. M. Brody, “Assessment of older people: 

Self-maintaining and instrumental activities of daily living,” The 

Gerontologist, vol. 9(3 Pt. 1), pp. 179-186, 1969. 

[22] W. Kuyken, J. Orley, M. Power, H. Herrman, H. Schofield, B. 

Murphy, Z. Metelko, S. Szabo, M. Pibernik-Okanović, N. 

Quemada, A. Caria, S. Rajkumar, S. Kumar, S. Saxena, D. 

Baron, M. Amir, M. Tazaki, A. Noji, G. Vanheck, J. Devries, J. 

A.Sucre, L. Picardami, M. Kabanov, A. Lomachenkov, G. 

Burkovsky, et.al., “The world health organization quality of life 

assessment (WHOQOL) - position paper from the world health 

organization,” Social Science and Medicine, vol. 41(10), pp. 

1403-1409, 1995. 

[23] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox 

for analysis of single-trial EEG dynamics including independent 

component analysis,” Journal of Neuroscience Methods, vol. 

134(1), pp. 9-21, March 2004.  

[24] B. Czigler, D. Csikós, Z. Hidasi, Z. A. Gaál, É. Csibri, É. Kiss, 

P. Salacz and M. Molnár, “Quantitative EEG in early 

Alzheimer's disease patients — Power spectrum and complexity 

features,” International Journal of Psychophysiology, vol. 68, 

pp. 75-80, 2008. 

[25] M. Yoshimura, T. Isotani, T. Yagyu, S. Irisawa, T. Yoshida, M. 

Sugiyama, T. Minami, T. Sugimoto, K. Nobuhara, G. Okugawa 

and T. Kinoshita, “Global Approach to Multichannel 

Electroencephalogran Analysis for Diagnosis and Clinical 

Evaluation in Mild Alzheimer’s Disease,” Neuropsychobiology, 

vol. 49, pp. 163-166, 2004.  

[26] H. I. L. Jacobs, M. P. J. Van Boxtel, J. Jolles, F. R. J. Verhey 

and H. B. M. Uylings, “Parietal cortex matters in Alzheimer’s 

disease: An overview of structural, functional and metabolic 

findings,” Neuroscience and Biobehavioral Reviews, vol. 36, 

pp. 297-309, 2012. 

[27] O. Jensen, J. Kaiser and J.-P. Lashaux,” Human gamma-

frequency oscillations associated with attention and memory,” 

Trends in Neurosciences, vol. 30(7), pp. 317-324, July 2007. 

[28] D. S. Bassett, E. T. Bullmore, A. Meyer – Lindenberg, J. A. 

Apud, D. R. Weinberger and R. Coppola, “Cognitive fitness of 

cost-efficient brain functional networks,” Proceedings of the 

National Academy of Sciences USA, vol. 106(28), pp. 11747-

11752, July 2009. 

 

287




