
 

 

Abstract - Extracellular recordings in the area of the 

subthalamic nucleus (STN) of Parkinson’s disease patients 

undergoing deep brain stimulation comprise fast events, Action 

Potentials and slower events, known as Local Field Potentials 

(LFP). The LFP is believed to represent the synchronized input 

into the observed area, as opposed to the spike data, which 

represents the output. We have shown before that there is an 

input-output relationship between these two components in the 

STN. In the present paper, we extend these observations by using 

LFP-driven Volterra models and the Laguerre expansion 

technique to estimate nonlinear dynamic models which are able 

to predict the recorded spiking activity. To this end, we 

rigorously examine the optimal model order. The improved 

performance of the second-order Volterra models indicates that 

there is a nonlinear relationship between the LFP and the spiking 

activity. To obtain a more compact and readily interpretable 

model, the most significant dynamic components of the identified 

Volterra models are extracted using principal dynamic mode 

analysis. 

 
Index Terms - Nonlinear modeling, Volterra kernels, Laguerre 

expansion, Subthalamic nucleus, Local field potentials, Spikes, 

Deep brain stimulation, Extracellular recordings. 

I. INTRODUCTION 

ubthalamic nucleus (STN) deep brain stimulation (DBS) is 

considered as the most effective surgical treatment for 

Parkinson’s disease (PD) symptoms [1]. Extracellular 

recordings during DBS comprise both fast events, called 

Action Potentials (APs) or spikes from cells within 50-350 μm 

from the electrode [2] and slower events, known as Local 

Field Potentials (LFPs). LFPs are low-frequency potentials 

that reflect the synaptic activity of a population of neurons 

within 0.5-3 mm from the tip of the recording electrode [3]. 

However, phenomena unrelated to synaptic events seem to 

influence the LFP signal [4]. The precise relationship between 

LFPs and the resulting APs has been a matter of long debate. 

In recent studies, we have demonstrated that both the rate and 

timing of AP firing in the STN of Parkinsonian patients may 

be predicted from LFP data using microelectrode recordings 

[5-8]. Therefore, in the present paper we further extend the 

predictive relationship between LFPs acquired from the 

microelectrodes placed inside the STN of PD patients and the 

timing of the observed spiking activity. To this end, we 

utilized nonlinear dynamic models of the Volterra-Wiener 

class, which have been widely used for modeling 

physiological systems [9-14], including a recent successful 

application to the study of action potential encoding in a 

spider mechanoreceptor [9]. Model order selection was 

examined in detail, using different metrics in order to ensure 

that overfitting is avoided. It is shown that the employed 

models are able to predict accurately the timing of the spiking 

activity of single neurons (single-unit recordings), while the 

performance drops considerably for multi-unit recordings.   

 

II. EXTRACELLULAR RECORDINGS 

A. Data Acquisition 

      Extracellular recordings were obtained from three awake, 

immobile and un-medicated Parkinson’s disease patients 

undergoing bilateral DBS in the Neurosurgery Clinic at 

Evangelismos General Hospital, Athens, Greece [7]. No 

electrical stimulation was applied during the recordings. Five 

microelectrodes in a “Ben-gun” configuration were 

simultaneously advanced from the STN to the substantia nigra 

at steps of 1mm or less. Signals acquired near the final 

stimulation point inside the STN were further examined. 

 

B. Signal Processing 

      In order to acquire the LFPs, the raw signals were low-

pass filtered with cutoff frequency around 200 Hz. On the 

other hand, the spike signals were extracted by applying a 

high-pass filter to the raw signals with cutoff frequency 

around 500 Hz. The exact procedure is described elsewhere 

[7]. 50 Hz noise and its harmonics arising from the power 

supply cables were removed from the LFP by fitting 50, 100, 

150 and 200 Hz sine waves to the LFP signal and subtracting 

the estimated components. Spike detection in the spike signal 

is achieved through amplitude thresholding, while 

superparamagnetic clustering is used for classifying spike 

trains according to the source neuron [15]. In this study, only 

recordings with single-unit or separable multi-unit activity 

were examined. For each source neuron observed, a binary 

signal was produced, indicating the absence (0) or presence 

(1) of a spike at a specific moment in time. Both LFP and 

spike signals were downsampled (fs = 1000 Hz) in order to 

reduce the computational complexity. 
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III. NONLINEAR MODELING OF STN NEURONS 

A. General Discrete-Time Volterra Model 

      The input-output relationship of a Q-th order nonlinear, 

causal and dynamic system with finite memory can be 

expressed by the following equation in discrete time: 
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where   (       ) are the Volterra kernels of the system. 

Volterra kernels can be viewed as weighting functions that 

describe the interaction between the input past and present 

values in order to generate the output signal. The zeroth-order 

Volterra kernel (q=0) is the output of the system when the 

input is absent. The first-order kernel (q=1) and the high-order 

kernels (q>1) capture the linear and nonlinear dynamics of the 

system respectively. An efficient way to estimate these kernels 

is the Laguerre expansion technique (LET), which effectively 

reduces the number of free parameters in the Volterra model. 

Using the orthonormal set of L discrete Laguerre functions 

(DLFs), the discretized Volterra kernels of the system can be 

expanded as: 
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where   ( ) denotes the jth order orthonormal DLF. The 

expansion coefficients   (       ) can be estimated using 

least-squares estimation based on the input and output data 

(LFP and the resulting spikes in binary form) [12]. 

 

B. Model training and testing 

      The General Discrete-time Volterra model is trained using 

50% of the data points available from each recording. To 

avoid overfitting, the remaining 50% of the data points are 

used to test the model. Training involves estimating the 

appropriate polynomial order of the model Q, the number of 

DLFs L and the value of the Laguerre parameter (0<α<1), 

which determines the rate of exponential asymptotic decline of 

the DLFs. In order to quantify the performance of the model, 

we used the two metrics described below: 

 

Area Under the Curve: In order to generate a binary output, 

we applied various thresholds to the (continuous) Volterra 

model output for both the training and testing sets. 

Consequently, the true positive rate (TPR) and false positive 

rate (FPR) of the model prediction were computed according 

to the relations: 

 

    
  

 
 

 

    
  

 
 

 

where     is the number of correctly predicted spikes in a 

time window of      ,    is the number of incorrectly 

predicted spikes,   is the number of actual spikes and   the 

number of non-spike events. By plotting these two quantities 

for each threshold value, we obtain a corresponding receiver 

operating characteristic (ROC) curve. The accuracy of the 

model prediction can be quantified by the Area Under the 

Curve. An area of 1 represents excellent performance, while a 

performance that is close to chance corresponds to an AUC 

value of 0.5. 

 

Matthews Correlation Coefficient (MCC): In order to better 

discriminate the differences between models with high AUC 

values, MCC values were calculated according to the 

relationship: 
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where     is the number of correctly predicted non-spike 

events,    is the number of incorrectly predicted non-spike 

events,    is the number of predicted spikes and    the number 

of predicted non-spike events. A MCC value of 1 corresponds 

to an excellent prediction, while a value of -1 indicates a total 

disagreement between prediction and observation. The 

threshold value that yielded the maximum MCC in the training 

set was directly applied to the testing set. 

      The optimal training parameters (Q, L, α) are selected by 

applying the cross-validation technique. The model with the 

maximum mean AUC and MCC value in the testing set was 

selected as the optimal. 

 

C. Principal Dynamic Modes Model 

      In order to obtain a more compact and readily interpretable 

model, the most significant dynamic components of the 

identified Volterra model were extracted using the principal 

dynamic mode (PDM) analysis [12]. The purpose of the PDM 

method is to extract a minimum set of linear filters, termed 

“principal dynamic modes”, which can adequately 

approximate the system output (Fig. 1). The PDMs of the 

system can be computed by creating the matrix: 
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where          are the zeroth, first and second-order Volterra 

kernels respectively. The eigenvectors    that correspond to 

the most significant eigenvalues    of   (in terms of their 

absolute value) define the PDMs of the system. The input 

signal  ( ) is convolved with the latter: 
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and the resulting outputs    are introduced into a multi-input 

static nonlinearity  (         ). The predicted spikes are 

obtained by applying a threshold (specifically, the threshold 

value that corresponds to the maximum ΜCC value in the 

training set) to the continuous output of the static nonlinearity: 
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Figure 1: Principal Dynamic Modes model 

 

      The static nonlinearity  (         ) was modeled by a 

Gaussian mixture model (GMM) fitted to the training data 

using the Expectation – Maximization algorithm, as it reflects 

the probability of AP firing for a particular PDM output values 

combination. An Artificial Neural Network (ANN) was also 

examined. The number of neurons in the input and hidden 

layer were equal to the number of the PDMs, while the output 

layer consisted of only one neuron. Hyperbolic tangent 

activation functions are employed both in the hidden and 

output layer. The ANN is trained using the Resilient Back-

propagation (Rprop) method, mostly due to its speed of 

convergence [16]. 

 

IV. RESULTS 

     First and second-order models were examined. Second-

order models exhibited higher prediction accuracy for the 

training and testing data. On the other hand, third-order 

models yielded higher testing prediction errors overall, 

suggesting that second-order models are adequate to model the 

data. Thus, results from higher-order models (Q>2) are not 

presented hereby.  

    The obtained first and second-order Volterra kernels for a 

representative data set are given in Figs. 2 and 3 respectively. 

The effective memory of both kernels was around 10 ms (the 

time axis extends in the past).   

      As pre-mentioned, the first-order kernel describes the 

linear effects of the input on the output at various time lags. 

For negative-valued inputs preceded by positive-valued inputs, 

the first-order kernel denoted a facilitatory effect on the output 

of the model (Fig. 2).  

      The diagonal values of the second-order kernel (Fig. 3) 

reflect the influence of the squared value of the input on the 

output at each time lag, whereas the off-diagonal values 

represent interactions between two input values at different 

time lags. 

 

 

 
Figure 2: First-order Volterra kernel 

 

 
Figure 3: Second-order Volterra kernel 

 

      Two PDMs were extracted from the identified Volterra 

model (Fig. 4). The most significant PDM (PDM1) exhibits 

high frequency characteristics and it resembles the first-order 

kernel in the time domain (Fig. 2). Since the LFP and the 

PDMs are sampled every 1ms (fs = 1000 Hz) and the LFP is a 

low frequency signal, the only fast events that can evoke 

excitatory behavior on the output are the transient changes in 

the LFP sign (Fig. 5) that consistently precede spikes. In turn, 

this gives rise to the first PDM high frequency characteristic 

(over 200 Hz).  

 

 
Figure 4: PDMs in frequency domain 
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Figure 5: Mean LFP 20ms before a spike 

 

     The PDM outputs   ( ) and   ( ) were obtained by 

convolving the input signal with the first and second PDM 

respectively. Fig. 6 illustrates the values of    and    that 

correspond to spikes and non-spike events.  

 

 
Figure 6: Scatter plot of the PDM output values that correspond to 

non-spike (blue) and spike (red) events  

 

      After training the GMM (based on the values of    and    

that respond to spikes) and the ANN (based on the values of 

   and    that respond both to spike and non-spike events), 

we obtained an estimate of the static nonlinearity (probability 

of firing function) [9] (Figs. 7 and 8), which corresponds to 

the probability that a combination of the PDM output values 

will give rise to a spike.  The ANN and GMM predicted spikes 

are shown in Fig. 9 and Fig. 10. The prediction accuracy for 

this particular recording was high. The ANN predicted 113 out 

of a total of 137 spikes in the testing set and mispredicted only 

17 out of 3189 non-spike events (Fig. 9). The GMM predicted 

correctly 117 spikes but it exhibited a higher false positive rate 

compared to the ANN (Fig. 10). 
 

 
Figure 7: Probability of firing based on the GMM  

 
Figure 8: Probability of firing based on the ANN   

 

 
Figure 9: ANN spike predictions for the training and testing set 
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Figure 10: GMM spike predictions for the training and testing set 

 

V. DISCUSSION AND CONCLUSIONS 

      Volterra kernels have been proven as an efficient tool for 

modeling the LFP-spike timing relationship. The improved 

performance of the second-order Volterra models indicated 

that there is a nonlinear relationship between these two 

quantities. The PDMs extracted from the Volterra kernels 

correspond to the most significant dynamic components of the 

system. Most of the recordings that were examined exhibited a 

PDM with frequency response characteristics similar to the 

PDM1 shown in Fig. 4. This implies that changes in the sign 

and the level of the input signal play an important role in spike 

triggering. Under resting conditions, beta-band (13-30 Hz) 

activity in patients with Parkinson’s disease is prominent in 

the STN. In cases where the LFP signal exhibited significant 

power in beta-band frequencies, PDMs with low and high 

frequency characteristics were observed (Fig. 11). 

 

Figure 11: PDMs from a recording with its LFP signal exhibiting 

significant power in the beta-band (13-30 Hz) 

 

      In most of cases, both second-order Volterra and PDM 

models were able to predict the presence of spike events with 

good accuracy (MCC values for the testing set between 0.6 

and 0.89). In recordings with non-separable multi-unit 

activity, second-order Volterra models exhibited a tendency to 

overfit the data. On the contrary, first-order and PDM models 

seemed to capture the timing of the actual spike trains better. 

Still, the prediction accuracy was lower compared to single-

unit activity predictions.  

      The results presented in this paper demonstrate the ability 

to infer spike trains from the LFP of Parkinson’s disease 

patients using nonlinear dynamic modeling. Our findings 

suggest that LFPs carry information that is predictive of the 

timing of single-unit spikes. Moreover, the PDM methodology 

is able to capture the most prominent dynamic characteristics 

of the system associated with spike triggering in the STN. Our 

next step is to examine thoroughly the contribution of different 

frequency bands (especially the low and beta-band 

frequencies) of the LFP signal to the spike triggering 

mechanism of the Parkinsonian STN. 
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