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Abstract—This paper describes a method to adapt the
spectral features extracted from heart rate variability (HRV) for
sleep and wake classification. HRV series can be derived from
electrocardiogram (ECG) signals obtained from single-night
polysomnography (PSG) recordings. Traditionally, the HRV
spectral features are extracted from the spectrum of an HRV
series with fixed boundaries specifying bands of very low
frequency (VLF), low frequency (LF), and high frequency (HF).
However, because they are fixed, they may fail to accurately
reflect certain aspects of autonomic nervous activity, which
in turn may limit their discriminative power when using
HRYV spectral features, e.g., in sleep and wake classification.
This is in part related to the fact that the sympathetic tone
(partially reflected in the LF band) and the respiratory activity
(modulated in the HF band) will vary over time. In order to
minimize the impact of these differences, we adapt the HRV
spectral boundaries using time-frequency analysis. Experiments
conducted on a dataset acquired from 15 healthy subjects show
that the discriminative power of the adapted HRV spectral
features are significantly increased when classifying sleep and
wake. Additionally, this method also provides a significant
improvement of the overall classification performance when
used in combination with some other (non-spectral) HRV
features.

Keywords - heart rate variability; sleep and wake classification;
time-frequency analysis; feature extraction.

I. INTRODUCTION

Sleep plays an important role in human health. Night-
time polysomnography (PSG) recordings, along with manually
scored hypnograms, are considered the “gold standard” for
objectively analyzing sleep architecture and occurrence of
sleep-related problems [1], [2]. PSG recordings are typically
recorded and analyzed in sleep laboratories, and are usually
split into non-overlapping time intervals (or epochs) of 30
seconds [1].

As shown in literature, monitoring heart rate variability
(HRV) throughout the night during bedtime is helpful in sleep
staging [2], [3], particularly to distinguish between rapid eye
movement (REM) and non-rapid eye movement (NREM) [4],
[5]. Spectral analysis of HRYV, as derived from the length
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variations of RR-intervals, has been widely employed in the
assessment of autonomic activity during bedtime [2], [4],
[6]. It traditionally involves the transformation of an HRV
series into an HRV Power Spectrum Density (PSD). An HRV
spectrum is typically divided into three bands, namely the
very low frequency (VLF) band from 0.003 to 0.04 Hz, the
low frequency (LF) band from 0.04 to 0.15 Hz, and the high
frequency (HF) band between 0.15 and 0.4 Hz [7], [8]. These
bands can then be used to compute certain properties such as
the ‘spectral power’ of the VLF, LF, and HF components and
the ratio of low-to-high frequency (LF/HF) components [2],
[4], [9], [10]. It has been found that the VLF spectral power is
mainly associated with long-term regulatory mechanisms; the
LF spectral power is a marker of sympathetic modulation on
the heart and it also reflects some parasympathetic influences
when the respiratory frequency components partially fall into
the LF band; the HF spectral power is related to parasympa-
thetic activity mainly caused by respiratory sinus arrhythmia
(RSA); the LF/HF ratio is an indication of sympathetic-
parasympathetic balance [2], [8], [10], [11]. In particular, the
HRV spectrum usually contains a peak centered around the
respiration frequency that is located in the HF band; and
another peak in the LF band which reflects, to a certain degree,
sympathetic activation [7], [12], [13].

The parameters derived from HRV PSD can be used as
features in automatic sleep staging systems [2], [3]. Previous
work [3] has used HRV spectral features with fixed boundaries
for sleep and wake classification. That classifier exploits the
fact that sympathetic tone and the respiratory activity are
modulated in different frequency bands of the HRV spectrum,
and exhibit different properties during sleep and wake states,
therefore allowing them to be a discrimination between them.

However, it is known that the HRV spectrum and the
dominant (or peak) frequencies of the LF and HF bands
are not constant but rather vary over time according to the
autonomic modulations of the heart beats [8]. Hence, when
fixed band boundaries are used to compute HRV spectral
features, we might produce inaccurate estimates of cardiac
autonomic activities. Since the discrimination of sleep stages
(sleep and wake in our case), depend on these estimates, our
classification accuracy will be affected. In order to avoid this
issue, we will use a feature adaptation method while estimating
the HRV features.
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Fig. 1. An example of the mean HRV PSDs (with standard errors) for sleep

and wake states of a subject.

Our method is based on “time-frequency analysis” of HRV
data that has been employed in other areas such as stress
detection [14], [15] and anesthesia analysis [16]. It has been
widely suggested that the LF and HF boundaries are related
to the peak frequency in the traditional LF band (called “LF
peak frequency”) and the peak frequency in the traditional HF
band (called “HF peak frequency”), respectively [15], [16].
In practice, these two peak frequencies can be estimated by
determining the frequency of local maximum in the band
between 0.003 and 0.15 Hz (i.e., the traditional VLF band
and LF band) and in the band from 0.15 to 0.4 Hz (i.e., the
traditional HF band), respectively. The working assumption
is that the peaks always fall within those two bands. By
centering the new bands around these peaks, instead of using
fixed boundaries, we can compensate for their time-varying
behavior. This should help, to some extent, to reduce within-
subject and between-subject variability in the way these fea-
tures express sympathetic activation and respiratory activity,
and ultimately help improving sleep and wake classification.
Fig. 1 illustrates an example of the mean HRV PSDs with
standard errors (standard deviations) for sleep and wake states
of a subject. It can be observed that, although their standard
errors overlap a lot, their mean values perform not the same in
different frequency ranges. This might provide an opportunity
of discriminating between sleep and wake states. Fig. 2
illustrates the time variation of the HRV PSD for a subject. It
visually shows that the HRV PSD is varying over time.

II. METHOD

Fig. 3 illustrates a block diagram describing the feature
adaptation method proposed in this paper used for sleep and
wake classification. Each block will be explained further in
the remainder of this section.
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Fig. 2. An example of the normalized HRV PSD versus time (30-s epoch)
of a subject.
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Fig. 3. Block diagram of the feature adaptation method, used for sleep and
wake classification.

A. Data

Fifteen healthy subjects, including 5 males and 10 females
with age 31.0 £ 104 (mean + standard deviation), were
recruited to participate in the experiment. A subject was
considered “healthy” if his/her Pittsburg Sleep Quality Index
(PSQI) was less than 6. Among the 15 subjects, 9 were
monitored in the Sleep Health Center, Boston, USA in 2009
and 6 subjects were monitored in the Philips Experience Lab,
Eindhoven, the Netherlands in 2010. Full PSG (Alice 5 PSG,
Philips Respironics) was recorded for each subject according
to the American Academy of Sleep Medicine (AASM) guide-
lines [17]. ECG data was recorded with a modified V2 lead,
sampled at 500 Hz. Sleep stages were manually scored by an
expert according to the AASM guidelines. Based on the scores
of the 15 participants, we recorded a sleep efficiency of 92.3%
+ 3.8%.



B. HRV Spectrum

In order to calculate the HRV PSDs, RR-intervals must first
be computed from the ECG signals. In our study, the following
steps can be performed in order to obtain an RR interval series:

o A peak detector, based on the filter-bank algorithm [18],
is used to locate the R peaks, yielding an RR-interval
series.

The very short (less than 0.3 seconds) and long (more
than 2 seconds) RR intervals (usually caused by ectopic
heart beats, misidentification of R peaks, or badly at-
tached electrodes during measurement) are removed.
The RR-interval series is normalized with respect to its
average amplitude (divided by the mean value).

The resulting series is then “re-sampled” at 4 Hz by using
linear interpolation.

Finally, the PSD is estimated with an autoregressive (AR)
model, where the order is adaptive and automatically
determined by Akaike’s information criterion (AIC) [19]
and is limited to 15.

C. Time-Frequency Analysis

As explained in Section I, the use of the fixed boundaries in
HRYV spectrum may not be appropriate to accurately represent
different states of the autonomic nervous system and further
to classify sleep and wake. The respiratory frequency, and
therefore the corresponding peak in the HF band vary in
time; likewise, the peak corresponding to the sympathetic
tone in the LF band also varies, reflecting differences in
the autonomic activation during sleep. By applying a time-
frequency analysis the boundaries which define each band
can be dynamically adapted so that the frequency components
can be more correctly assigned to the corresponding bands.
The boundary adaptation was performed in a relation with the
LF and HF peak frequencies (changing over time) that can
be estimated before feature extraction. Fig. 4 illustrates an
example of a filled contour plot of the HRV spectrum versus
time, in which the LF peak and the HF peak frequencies vary
over time.

By re-defining the boundaries of the LF and HF bands for
each epoch, we can overcome the issues mentioned above.
This can be achieved in the following way:

o The new HF* band is centered on the HF peak frequency
[14], [15] with a constant bandwidth of 0.1 Hz [20]. This
choice reflects the observation found after analyzing the
HRYV PSDs of all 15 subjects that most of the frequency
components related to RSA lie within a bandwidth of
0.1 Hz. A larger bandwidth (usually 0.25 Hz) was used
in other work [14], [21], but we found that in some
occasions it also includes the overlapping components
from its adjacent band (i.e., the LF band).

The new LF* band is centered on the dominant frequency
that is found in the traditional LF band, with a bandwidth
of 0.11 Hz (similar to the traditional definition).

The VLF* band is defined from its traditional lower limit
of 0.003 Hz up to the lower limit of the LF band.
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Fig. 4. HRV spectrum versus time (30-s epoch) of a subject. The limits of the
new HF* and LF* bands are plotted in dash and solid curves, respectively.
The lower boundary of the new VLF* band (at 0.003 Hz) is plotted as a
bold-solid line.

Fig. 4 illustrates an example of the adapted boundaries
calculated for a given subject. It should be noted that the LF*
and HF* bands may overlap in some epochs. This occurs when
the LF and HF peaks are too close to each other or when there
is no HF peak. The latter one often occurs during REM sleep
[22] so that the new HF* band will be centered on the local
maximum (according to our definition) that is usually the first
frequency point in the traditional HF band since the spectral
power in this band is usually decreasing over frequency.

D. HRV Feature Extraction

After determining the bands we can finally extract HRV-
related features which can be used for sleep and wake clas-
sification. In our study we computed the logarithm of the
spectral power in the VLF*, LF* and HF* bands (from here on
indicated as HRV_VLF, HRV_LF, HRV_HF') and, in addition,
the ratio between the spectral powers of the LF* and the HF*
bands (HRV_LF/HF).

Note that, before computing the logarithm, the power of
each band should first be normalized. This can be achieved by
dividing the power in the VLF*, LF*, and HF* bands either
by the total spectrum power [9], [23] or by the total spectrum
power minus the power in the VLF* band [4], [6]. Since we
did not observe any significant difference in the final result
we will present the results obtained with the first definition.

E. Spectrum Information

As mentioned before, the determination of the new bound-
aries requires knowledge of spectrum information (here LF
and HF peak frequencies), which must be obtained before
extracting the spectral features. The LF peak frequency can
be estimated by detecting the location of the peak in the
HRV spectral range from 0.003 to 0.15 Hz. The HF peak
frequency can be estimated from a respiratory effort signal
simultaneously recorded with the PSG data or it can be derived



from the HRV series directly by searching for the peak in the
range between 0.15 and 0.4 Hz. In this study, to avoid using
an additional sensor modality, we used the latter approach.

F. Discriminative Power

A Hellinger distance metric [24] is employed to evaluate the
discriminative power (i.e., separability) of the HRV spectral
features in classifying sleep and wake. It is estimated by
computing the amount of overlap between two probability
density estimates in a binary class problem, expressed as:

Din(p.q) = /1= > Vo(@)a(w) (1)

where p(x) and g(x) are the probability density estimates of
the feature values given class sleep and wake, respectively. In
its most basic form, these density estimates can be computed
by means of a normalized histogram with either a fixed number
of bins or a specific bin size. In our study we computed
histograms with 100 bins. A larger Hellinger distance reflects
a higher discriminative power in separating the two classes.

G. Sleep and Wake Classification

It has been demonstrated that a Linear Discriminant- (LD-)
based classifier is appropriate for the task of sleep and wake
classification [3]. To assess the performance of this classifier,
conventional measures of specificity (proportion of correctly
identified actual wake epochs) and sensitivity (proportion
of correctly identified actual sleep epochs) used in binary
classification are not the most adequate criteria. The reason
is that the number of epochs of one class (wake) during a
whole-night recording will naturally be much smaller than the
number of epochs of the other class (sleep), in what is usually
called “imbalanced class distribution”. The Cohen’s Kappa
coefficient of agreement x [25] not only allows for a better
understanding of the general performance of the classifier in
correctly identifying both classes, but also allows for a better
representation of the imbalanced problem [3]. Although it
indicates, with a single metric, how well a classifier performs
for both classes, evaluating a method with this single measure
might not be sufficient. An alternative is to use an ROC
curve which simply plots the “true positive rate” (i.e., sensi-
tivity) versus “false positive rate” (i.e., one minus specificity)
thus illustrating the classifier’s performance over the entire
solution space by means of varying a decision threshold
[26]. However, the ROC curve has been shown to be over-
optimistic when there is a heavy imbalance between the two
classes [27]. Hence, a so-called Precision-Recall (PR) curve is
recommended instead. When comparing different classifiers, a
larger area under the PR curve (AUC-PR) indicates a better
performance. In this study, the two measures (x and AUC-
PR) were used to evaluate the performance of sleep and wake
classification with and without HRV-band adaptation.

In addition, we combined the HRV spectral features with
some other (non-spectral) HRV features selected from the
feature set used in previous work [3], such as time domain
features [2], [3], nonlinear measures extracted using Detrended
Fluctuation Analysis (DFA) [28] and Sample Entropy [29].
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This serves the purpose of examining whether the feature
adaptation method described in this paper can help improving
the classification performance when combined with other
important features. Note that all these features were extracted
from the same HRV series. Also, we compared the results with
those obtained using actigraphy, a well-known feature for sleep
and wake classification [3] and which is used as reference in
this study.

III. RESULTS

A leave-one-subject-out cross validation (LOOCV) proce-
dure was conducted to assess the discriminative power of
the HRV spectral features and also to assess the performance
of our classifier. Table I compares the discriminative power
of the HRV spectral features computed using the traditional,
fixed boundaries and using the adaptive boundaries. This table
shows that, after using the method proposed in this paper,
the discriminative power of the HRV spectral features are
significantly increased (after a Wilcoxon Signed-ranks test
with p < 0.01). For comparison, the table indicates the
Hellinger distance of the actigraphy feature “activity count”
(AC). Although the feature adaptation helps improving the
discriminative power of the HRV spectral features, it is still
relatively lower than that of the actigraphy feature.

Table II compares the classification performance obtained
with and without boundary adaptation. It is interesting to
note that the value of k is similar when using HRV spectral
features with and without adaptation. This seems to contradict
the significant increase in discriminating power found with
the Hellinger distance. Upon closer inspection we found that
actually that occurs only for that single point in the solution
space. In fact, when evaluating the performance over the entire
solution space with AUC-PR we see an increase 0.30 to
0.36. The PR curves plotted in Fig. 5 clearly show that, in
general, the adapted features are better than the original ones,
particularly in the region when recall is lower than about 0.31.
Note that the PR curves were obtained by pooling the LOOCV
results of all subjects.

After combining the HRV spectral features with the ad-
ditional HRV features indicated earlier, we see a significant
increase in k from 0.44 + 0.25 (with fixed boundaries) to
0.48 4+ 0.24 (with adaptive boundaries), where significance
was tested with a paired Wilcoxon test (p < 0.01). Likewise,
the pooled AUC-PR metric improves when using boundary
adaptation. As the table indicates, the standard deviations of
K are relatively large compared to the mean values, indicating
large between-subject variations in the classification results.
The significance tests were performed pair-wise for each
subject, thus indicating that boundary adaptation improved the
classification performance in almost all subjects. Finally, for
comparison purposes, the table also indicates the classification
results using the actigraphy feature. As expected, it slightly
outperforms the HRV features (with adaptation). Nevertheless,
it should be kept in mind that although actigraphy is partic-
ularly adequate for sleep and wake classification, it requires
the usage of an additional sensor [3].



TABLE I
COMPARISON OF DISCRIMINATIVE POWER

Hellinger Distance
Feature Without Adaptation With Adaptation Wilcoxon p value
(Fixed Boundaries) | (Adaptive Boundaries)

HRV_VLF 0.19 4+ 0.02 0.22 4+ 0.01 0.001

HRV_LF 0.25 £+ 0.01 0.26 £+ 0.01 0.004

HRV_HF 0.23 £ 0.01 0.29 £ 0.01 0.001

HRV_LF/HF 0.22 £+ 0.01 0.27 £ 0.01 0.001

AC 0.49 £+ 0.01 /
TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE
HRV Spectral Features* HRV Features**
Actigraphy Feature | Without Adaptation With Adaptation Without Adaptation With Adaptation
(Fixed Boundaries) | (Adaptive Boundaries) | (Fixed Boundaries) | (Adaptive Boundaries)
Accuracy 94.8 + 2.7% 90.3 £+ 9.0% 89.3 +£ 10.7% 89.9 + 8.5% 93.1 + 4.2%
Sensitivity (Recall) 46.8 + 19.6% 32.7 £ 14.1% 339 + 13.8% 50.6 + 13.4% 49.7 £ 19.2%
Specificity 99.1 £ 1.0% 954 + 9.6% 94.1 £ 11.6% 93.3 £ 8.9% 96.6 &+ 3.3%
Precision 82.8 + 16.4% 58.5 £+ 33.1% 574 + 32.4% 52.6 £+ 33.6% 60.1 £+ 29.9%
Kappa Coefficient () 0.53 £ 0.15 0.33 £ 0.18 0.33 £ 0.19 044 £ 0.25 048 £+ 0.24
(Pooled) AUC-PR 0.67 0.30 0.36 0.51 0.54

*The HRV spectral features consist of HRV_VLF, HRV_LF, HRV_HF, and HRV_LF /HF.
**The HRV features consist of the HRV spectral features and the other HRV features selected from the feature set used in [3].
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Fig. 5. Comparison of pooled PR-curves for sleep-wake classification using
actigraphy (bold-solid curve), HRV features containing the spectral features
with adaptation (bold-dash curve) and without adaptation (bold-dot curve),
and HRYV spectral features with adaptation (dash curve) and without adaptation
(dot curve). Here wake is considered as the positive class.

IV. DISCUSSION

The method described in this paper shows a time-varying
adaptation of the HRV spectral features that offer higher
discriminative power in classifying sleep and wake states.
The features are used as inputs to a sleep-wake classifier. We
re-defined the spectral boundaries which are adapted to the

spectrum information (related to autonomic activity) that can
be obtained before feature extraction. This is due to that we
aim at defining a band that can better capture certain aspects
of physiology during sleep, for example, respiratory activity
(in the HF band) and sympathetic activation (in the LF band).
For this purpose, we used an HF* bandwidth of 0.1 Hz instead
of the 0.25 Hz used in the traditional HF band. Alternatively,
rather than using a constant HF bandwidth (0.1 Hz) in this
study, it could be determined by measuring and analyzing
respiratory effort signals [15], but the use of an additional
sensor is required.

Additionally, we observed that the LF and HF bands can
overlap under different circumstances: when the peak in the
LF and in the HF band are close to each other, when there is no
clear peak in the HF band, or when the respiratory-frequency
peak is below 0.15 Hz and therefore lies in the traditional
LF band. The overlaps could be observed in Fig. 4. In these
situations, the overlapped part of the spectrum components
will actually be taken in the features computed for both the
LF* and the HF* bands. This may have an impact in the
classification process, reducing the accuracy of the classifier.
Therefore, a more accurate method is needed for defining a
threshold which separates the two bands rather than just using
fixed bandwidths.

Finally, as we mentioned, the respiratory information was
derived from the HRV data. Although this may not be as
good an estimation as a direct measure of respiratory effort,
it has been proven to be an accurate estimate of respiratory
rate [2], [3]. More importantly, it does not require using an
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additional sensor modality in this type of applications. Besides,
the respiration rate can also be estimated from the ECG-
derived respiratory (EDR) signal (i.e., the “envelope” of the
ECG signal that reflects the respiration-induced modulation)
[30]. This method is suggested to be further investigated.

V. CONCLUSION

In this study, we used a feature adaptation method based on
the time-frequency analysis to adapt HRV spectral features. It
aims at providing more accurate estimates of the sympathetic
and respiratory activities in order to obtain a better sleep
and wake classification. By adapting the spectral boundaries
according to the peaks found in high- and low-frequency bands
of the HRV PSD, the adapted features will have a larger
discriminative power in distinguishing between sleep and wake
states. Moreover, the adaptation also improves classification
performance, especially after combining the HRV spectral
features with the other existing HRV features, achieving a
Cohen’s Kappa coefficient of 0.48 + 0.24 (overall accuracy
of 93.1 £ 4.2%, sensitivity of 49.7 £ 19.2%, specificity of
96.6 & 3.3%, and precision of 60.1 £+ 29.9%). However, since
occasionally the adapted boundaries (and the HF* bandwidth)
may still overlap, it is suggested to further explore a method
that can better optimize these boundaries.
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