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Abstract—: Biological networks are often described as 
probabilistic graphs in the context of gene and protein sequence 
analysis in molecular biology. Microarrays and proteomics 
technology allow the monitoring of expression levels over 
thousands of biological units over time. In experimental efforts 
we are interested in unveiling pairwise interactions. Many 
graphical models have been introduced in order to discover 
associations from the expression data analysis. However, the 
small size of samples compared to the number of observed 
genes/proteins makes the inference of the network structure quite 
challenging. In this study we generate gene-protein networks 
from sparse experimental data using two methods, partial 
correlations and Kernel Density Estimation, in order to capture 
genetic interactions. Dynamic Gaussian analysis is used to match 
special characteristics to genes and proteins at different time 
stages utilizing the KDE method for expressing Gaussian 
associations with non-linear parameters. 

Keywords- Gaussian Graphical Model, Kernel Estimation, 
Sparse Temporal Expansion, Network construction, Arabidopsis 
thaliana. 

I.  INTRODUCTION  
In recent years the description of genome sequences has 

given a large amount of gene and protein expression data. The 
simultaneous examination of thousands genomic units gave a 
new perspective in the field of bioinformatics as it made 
possible the study of biological networks. Several 
methodologies have been proposed for constructing gene-
protein networks based on expression data, such as Bayesian 
networks [1, 2], Gaussian networks [3] that aim to provide 
suitable mathematical models for describing stochastic net-like 
associations and dependence structures in complex high-
dimensional data. In addition, dynamic graphical approaches 
have been introduced that model time dependencies and reveal 
an interactive behavior between different time slices [2, 4].  

Unfortunately, although graphical models are promising for 
interaction analysis their main drawback is their limited 
performance when the experimental data are insufficient. This 
problem has two aspects. Firstly, the lack of features 
experimental samples (genes/proteins) when the number of the 
features under examination has greatly increased. More 
precisely, in a typical microarray dataset the number of genes 
exceeds by far the number of sample points that correspond to 
a gene. This makes the estimation of a network structure a 
challenging problem due to the uncertainty of calculation of the 
correlation matrix [3, 5].  

Secondly, the information contained in expression data is 
limited by their quality, the experimental design, noise, and 
measurement errors. These lead to loss of information making 
a hard task the estimation both of causal relationships in 
network structure and for the dependencies enclosed between 
neighbored genes/proteins [5]. 

A common graphical representation is the Gaussian model 
firstly introduced by Kishino and Waddell [6]. However, there 
is a critical detail in applying Gaussian modeling. If the number 
of samples is far smaller than the number of features, then this 
framework works poorly. In that case, the covariance matrix, 
which encloses the interactions between genes/proteins is not 
positive definite, thus makes impossible the computation of the 
partial correlation matrix. 

Given these challenges, great steps have been undertaken to 
overcome these obstacles. In this paper, we propose a new 
methodology in modeling dynamic Gaussian graphical models 
from sparse data. More specifically, our goal is summarized in 
filling the information loss in time varying Gaussian networks 
through the non-parametric framework of Kernel density 
estimation [7]. Our approach lies under the idea that Gaussian 
densities describe sufficiently biological interactions and that 
neighboring gene/proteins can be described by conditional 
probabilities as approximations of Gaussians with nonlinear 
parameters. Also, due to the fact that Gaussian graphical 
models are widely known as non-directed graphs, we introduce 
directions based on Bayesian information criterion. This makes 
interactions within the graph conceptually more representative 
to biological processes.   

Our presentation is organized as follows. In the following 
section we provide a review of kernel based density estimation 
and approaches in network construction from experimental 
data. We continue introducing our approach in representing 
nonlinear relations between genes/proteins using a dynamic 
Gaussian model. In last section we present our results in 
applying our algorithms. Finally, conclusion and future work 
are given.  

II. BACKGROUND INFORMATION 
We explore two approaches for estimating the structure of a 

gene-protein network. We generate two different networks 
reflecting the different approaches in expressing generic 
interactions between genes and proteins. The first approach 
focuses on estimating the inverse partial correlation matrix 
through a statistical probabilistic approach of Gaussian 
Graphical Model (GGM). The second examines dependency 
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between nodes using a non-parametric approximation of the 
missing experimental data through Kernel density estimation 
(KDE). After that step, we assign directions to the edges of the 
produced networks using Bayesian Information Criterion 
(BIC).  

A. Gaussian Graphical Model 
Gaussian Graphical Models [6] are undirected probabilistic 

graphical frameworks also known as covariance selection 
models. In a GGM network, the identification of conditional 
independence between nodes is based on the assumption that 
nodes follow a Gaussian distribution. In such case, interactions 
between two variables are reduced in estimating the covariance 
matrix S. Each element in Sik, via Sik=ρikσiσk and Sii=σi

2, 
represents the correlation coefficient ρik between nodes Xi and 
Xk and indicates an association. A good notion of the strength 
for these interactions is the partial correlation matrix Π=(πikሻ. 
Its coefficients describe the correlation between nodes i and k 
conditioned on all remaining nodes of the network. In the 
GGMs this property is reflected in the inverse covariance 
matrix S, S-1. 

πik=- Sik
-1

ඨSii
-1Skk

-1
                                       (1) 

Given the experimental data, the covariance matrix is 
computed and then inverted. From (1) the partial correlations, 
πik can be found. Significantly small values of |πik| indicate 
conditional independence between i and k given the remaining 
variables in graph. On the contrary, high values of |πik| indicate 
dependence between i and k which contributes to adding an 
edge between these nodes. 

However, this approach is only applicable if the sample 
number of data is larger than the number of genes/proteins. 
Otherwise, the inversion of S is unstable. To overcome this 
obstacle we invert S through Moore-Penrose pseudo inverse [3, 
6], an approximation of the standard matrix inverse, based on 
the singular value decomposition (SVD). 

B. Kernel Density Estimation 
Kernel density estimation [7] is a non-parametric 

framework that can predict the probability density function 
(pdf) of a random variable. Given a limited genomic i.i.d 
dataset X=(x1,..xn), KDE allows to simulate the pdf of X as 
follows: 

x - xn1 if (x) = Kh i=1nh h
ˆ ∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

                      (2) 

K(.) is a symmetric positive definite Gaussian function ܭሺݑሻ ൌ ଵଶగ ݁షభమ ௨మ, n is  dataset’s size of the gene/protein X and 
h>0 is a smoothing parameter, the bandwidth.  
 

Under the assumption that gene and gene products share 
similarities in datasets, the problem of network construction is 
reduced to examination of independence between nodes Xi and 
Xk, through the cross correlation test: 

fሺXi,Xkሻ=f(Xi)*f(Xk)                           (3) 

The smaller the absolute difference between two members of 
the equation, the more independent the corresponding nodes 
are. In contrast, high absolute difference indicates dependence 
between Xi and Xk, thus connection between candidate nodes. 

C. Edge Orientation 
Up to this point we have provided two ways in revealing 

the network structure. These approaches give an intuition 
whether two nodes interact. But they do not imply anything 
about causality, denoting which node is the cause and which is 
the result. In order to determine the edge orientation for the 
above networks we have to examine the causality between 
pairs of nodes. For instance, between two nodes there are two 
models, i.e. model M1 where node Xi is the parent of node Xk, or 
the opposite, model M2.  

Model selection procedures cannot distinguish the above 
described models because their distribution or likelihood is 
equivalent. In other words, the variation in the level of node Xi 
causing a variation on node Xk yields the same joint density as 
the reverse situation [8]. 

fሺXk|XiሻfሺXiሻ=fሺXi,Xkሻ=f(Xk)fሺXi|Xkሻ               (4) 

Therefore, the distinction between models M1 and M2 is 
made by inferring direction of causation between nodes using a 
scoring function, the BIC criterion (Bayesian Information 
Criterion). 

BIC=-2 log L +K log N                         (5) 

where 
∧
L  is the maximum likelihood, K the number of 

parameters to be estimated in the model, and N the sample size.  
A model is better than another model if it has a smaller BIC 
value. Thus, for each edge the BIC score is evaluated 
comparing the two possible orientations, orienting the edge in 
favor of the direction with the lowest value. 

In more complex networks edges are oriented by splitting 
the graph structure into smaller sub networks. For each node, 
the number of edges connecting to it is counted. Nodes are then 
arranged in descending order in terms of the number of nodes 
connecting to it. A node and all the nodes that are directly 
connected to it form a sub-network. For each sub-network, the 
BIC score is computed for each edge that connects a pair of 
nodes, containing all other causative nodes to that pair.  

D. Linear Gaussian Graphical Model 
Linear Gaussian Graphical Model (LGGM) [9] is a 

classical approach in GGMs that models dependencies 
between nodes as linear combination of means. Each node Xi 
is distributed depending on its parents as   Xi~N(∑ wikxk,σ)k . 
N(.) denotes the normal distribution, whereas the sum extends 
to all parental nodes of node i with xk denoting the value of 
node k. 

Apparently, LGGM focuses on modeling linear 
dependencies with parental nodes estimating the mean of a 
node as a combination of means. In addition, its variance 
depends only on the experimental data.  In the following 
section we introduce another approach where non-linear 
characteristics are given to the parameters of distribution.  
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E. Dynamic Gaussian Model 
Dynamic Gaussian Networks (DGN) [2, 10] can be viewed 

as extensions of GGMs. In contrast to GGMs that are based on 
static data, DGNs use time series data for constructing causal 
relationships among random variables. 

For p microarrays sets and expression levels of n 
genes/proteins, the data matrix can be summarized as p×n  
X=(X1,…,Xp)Twhose ith row vector Xi=(xi1,…,xin)Tcorresponds 
to a gene/protein expression level vector measured at time t. 
Under the concept that the state vector time i depends only by 
i-1 and that each node has the same parents at all states, the 
joint distribution and conditional probability are composed as:  

f൫X11,..Xpn൯=fሺX1ሻfሺX2|X1ሻ..f൫XpหXp-1൯                (6) 

f൫XiหXi-1൯=f ቀXi1ቚPa൫i-1൯,1ቁ *..*f ቀXinቚPa൫i-1൯,nቁ        (7) 

where Pa൫i-1൯, j are the parents of gene/protein j at time slice i-1. 

Thus, in DGNs transition between different time slices is 
modeled as a product of conditional probabilities where the 
parents of node Xi-1 are bequeathed to Xi. 

III. PROPOSED METHOD 
From the above tools, two networks are generated each 

following a different approach in revealing genetic associations 
(GGM and KDE). In this section, we augment these networks 
with a framework that enforces a non-linear view in modeling 
the parameters of conditional probability distribution for 
estimating dependencies between genes/proteins. We represent 
conditional probabilities as Gaussian distributions through 
Kernel density estimation.   

A. Conditional Propability Distribution  
GGMs are types of graphical models for representing 

complex associations among Gaussian random variables. In 
this context, a gene/protein corresponds to a random variable 
shown as a node, while gene/protein interactions are shown by 
directed edges. Thus interactions with parental nodes are 
modeled by the conditional distribution of each gene. We use 
KDE as a non-parametric framework in order to capture the 
dependencies from parental nodes that underlie on 
experimental data. 

 Suppose we have p sets of microarrays and n 
genes/proteins where Xi=(xi1,…,xip)Tis a p dimensional 
expression vector obtained for  ith gene/protein. Let Pai be the 
parents of gene/protein Xi then direct dependencies are 
encoded as: 

f(X , )i
 f(X  | ) =   i f( )

PaiPa Pi ai
                    (8) 

In order to model these relations with a coherent 
mathematical framework based on genomic expressions, we 
find the joint distributions of (8) with Standard Gaussian 
Kernel (SGK) as follows [7]: 

h 1i=1 2

n1 x-x y-yi if (x, y) = K  K   ˆ
h hn

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑              (9) 

From (8), (9) 
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p
                (10) 

where K(.) is a Gaussian kernel function described as (2), p  is 
dataset’s size and h1=c1n-1/6, h2=c2n-1/6 for c1,c2>0 are the 
smoothing parameters selected as optimal approximations of 
Gaussians basis functions [11]. 

Equation (10) implies that the conditional density estimate 
is an asymptotic approximation of Gaussian [11]  
N൫θ1,σ1

2൯  with RሺKሻ=K(u)2du  and parameters as follows: 

θ1= σκ2

2√c1c2
(c1

2fሺ2ሻ൫PaiหXi൯+c2
2fሺ2ሻ൫PaiหXi൯+2c2

2f(2)(Pai |Xi)f
(1)(Pai |Xi)(11) 

|2R(K) f( X )i2σ =1 c c f( )1 2

Pai
Pai

                              (12) 

Hence, (11) and (12) encode a Gaussian model that 
captures non-linear dependencies of Gaussian’s parameters. If 
a gene/protein has no parents the mean and variance is taken 
from KDE.  

The main innovation of this model is that it captures non-
linear relationships between molecular units based on 
expression data. In addition, there is no information loss. In 
fact, through KDE missing data is no longer an obstacle due to 
estimation from the remaining samples.  

IV. RESULTS 
In order to investigate the statistical properties of the 

proposed framework we start by revealing the network 
structure using the GGM and KDE approaches. After that step, 
and for each generated network, the conditional probabilities 
are found using our proposed algorithm, as well as the LGGM 
approach. Finally, through inference we evaluate the influence 
of certain significant factors comparing our results to LGGM. 
The same framework is applied for different time slices in 
order to examine time dependencies. 

 The data samples we used for testing concern the 
developing Arabidopsis thaliana [12] seeds, harvested at 5, 7, 
9, 11, and 13 days after flowering using Affymetrix ATH1 
chips. We isolated the carbohydrate metabolism pathway 
including 7 ‘significant’ and 6 ‘unrelated’ genes (table I) and  

TABLE I.  SIGNIFICANT AND UNRELATED GENES/PROTEINS 

Genes Proteins Relevance Biological Process 
At3g43190 - Related Primary metabolism 
At4g02280 - Related Primary metabolism 
At5g20830 - Related Primary metabolism 
At5g37180 - Related Primary metabolism 
At5g49190 - Related Primary metabolism 
At5g22510 - Related Primary metabolism 
At1g35580 - Related Primary metabolism 
At1g13140 - Unrelated Energy 
At2g39470 - Unrelated Energy 
At4g14630 - Unrelated Protein destination & storage 
At4g15010 - Unrelated Intracellular traffic 
At1g54050 - Unrelated Protein destination & storage 
At3g17520  p2322, p2323 Unrelated Disease/defense 
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Figure 1.   True Positive Rate (Fig. 1) 

TABLE II.  GENE-PROTEIN INTERACTIONS 

 
studies the network associated with this pathway. Under the 
term significant genes, we included such genes that encode 
sucrose synthases (At3g43190, At4g02280, At5g20830, 
At5g37180, At5g49190) or invertases (At1g35580, 
At5g22510), both important enzymes in carbohydrate (sucrose) 
metabolism [13]. We included more than one gene that encodes 
sucrose  synthases, in order to use them as internal controls for 
our proposed algorithm. Under the term unrelated genes, we 
included four genes that are identified as biomarkers for 
specific organs (flowers, leaves, roots, siliques) in Arabidopsis 
and not expressed in seeds (AT1G13140, AT2G39470, 
AT4G14630, AT4G15010), as well as 2 genes (At1g54050 and 
At3g17520) that are expressed in seeds but they are not 
involved in carbohydrate metabolism [12, 14]. Overall, we 
studied 113 genes and 27 gene-protein pairs, for all stages of 
growth. Our goal was to verify known gene-protein interactions 
[11], direct associations between genes as well as to highlight 
how the pathway is affected by significant factors. 

Table II presents the number of verified gene-protein pairs. 
The first column describes different thresholds on partial 
correlation set on Moore-Penrose inverse for (1), while the 
second column provides the thresholds of absolute difference 
of (3) for KDE. The third and fourth columns summarize for 
both approaches the verified number of gene-protein 
interactions. The fifth and sixth columns present the number of 
new edges that have occurred for each threshold while the two 
last columns describe the number of edges that changed 
orientation according to BIC criterion. 

 Table II shows for the inferred networks with Moore-
Penrose pseudo inverse that as thresholds increase the graph 
becomes sparser with less interactions being verified. This is 
due to the lack of strong partial correlations between molecular 
units. However, as thresholds of KDE increase, correlation also  

 
increases. This implies that genes-proteins seem to be less 
independent. Thus, more interactions are identified and the 
graph becomes more cohesive.  

Table III shows the verified interactions between genes as 
well as the interactions of proteins. We compared the 
performance of the two approaches taking into account the 
existent information on gene-gene and protein-protein 
interactions from two related databases, namely ATTED-II, the 
Arabidopsis gene co-expression database [15] and AtPIN, A. 
thaliana Protein Interaction Network [16].  The former 
provides 3,321 genes (interacting directly or indirectly), while 
the latter provides 1,092 protein-protein interactions, when all 
examined  genes are used as input queries for known gene or 
protein interactions in A. thaliana, respectively. For the 
examined pathway we retrieved 62 known gene interactions 
and 729 protein interactions. 

Tables II and III provide a notion of the identified number 
of verified interactions. Comparing the performance of two 
methodologies, KDE appears to behave better in capturing the 
above biological associations. More precisely, KDE identifies 
up to 81% of known gene/protein interactions,   up to 96% 
known gene-gene interactions and up to 36% existent protein-
protein interactions. The percentages for GGM are 70%, 93% 
and 33%, respectively. Finally, to assess the network 
reconstruction ability, we counted true positives TP (correctly 
identified true edges), false positives FP (spurious edges), true 
negatives TN (correctly identified zero-edges) and false 
negatives FN (not recognized true edges) edges. Fig. 1 
summarizes the true positive rate for both algorithms, meaning 
framework’s ability to detect existent interactions. 

TABLE  III GENE-GENE AND PROTEIN-PROTEIN ITERACTIONS 

Threshold Verified Pairs New Edges Oriented Edges 
GGM KDE GGM KDE GGM KDE GGM KDE 

≥0.1 ≤0.1 19/27 1/27 5594 421 192 51 
≥0.2 ≤0.2 15/27 7/27 4852 1075 181 95 
≥0.3 ≤0.3 8/27 14/27 4097 1969 159 83 
≥0.4 ≤0.4 9/27 15/27 3357 2741 140 82 
≥0.5 ≤0.5 8/27 17/27 2618 3995 165 93 
≥0.6 ≤0.6 6/27 17/27 1942 5224 133 77 
≥0.7 ≤0.7 4/27 17/27 1300 5682 124 66 
≥0.8 ≤0.8 4/27 23/27 753 6100 111 70 
≥0.9 ≤0.9 0/27 22/27 286 6327 58 60 

Threshold Verified Gene 
Interactions 

Verified Protein 
Interactions 

GGM KDE GGM KDE GGM KDE 

≥0.1 ≤0.1 58/62 0/62 240/729 46/729 

≥0.2 ≤0.2 52/62 3/62 212/729 76/729 

≥0.3 ≤0.3 48/62 6/62 182/729 108/729 

≥0.4 ≤0.4 44/62 19/62 158/729 148/729 

≥0.5 ≤0.5 39/62 34/62 130/729 184/729 

≥0.6 ≤0.6 35/62 47/62 106/729 220/729 

≥0.7 ≤0.7 28/62 53/62 84/729 236/729 

≥0.8 ≤0.8 20/62 57/62 60/729 256/729 

≥0.9 ≤0.9 08/62 60/62 38/729 262/729 

Figure 2.  F-measure for KDE and GGM. (Fig. 2) 
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Figure 5.  Histogram of the experimental data for all days of growth. (Fig. 5) Figure 3.  Comparison between KDE and LGGM. (Fig. 3) 

In order to find the optimal threshold for each algorithm the 
size of the graph has to be taken into consideration. This is 
necessitated by the fact that as graph becomes denser, more 
interactions are generated. Thus the probability of capturing 
preexistent associations increases. Fig. 2 presents for all 
thresholds the performance of two methodologies according to 
F-score metric, F= 2*precision*recall

precision recall
. In conclusion, appropriate 

thresholds for KDE are 0.4≤th≤0.6 while for GGM 0.6≤th≤0.8. 

From a statistical perspective, not all significant edges were 
found (with low F-score). However, not necessary all false 
positives edges are spurious edges. In fact, using ANAP 
(Arabidopsis Network Analysis Pipeline), an interactive Web 
tool that contains protein interaction data information from 11 
public Arabidopsis databases [17], we constructed a protein 
interaction network based on our studied genes/gene products 
as input and confirmed a number of 3,544 edges. This implies 
that our framework performs well in capturing genetic 
interactions, since for the proposed threshold of 0.4 the 
network constructed via KDE consists of approximately 3,000 
edges. 

In the next step, we estimate the conditional probabilities 
for the produced thresholds. For the generated networks, the 
mean and variances are compared with the equivalent 
parameters of the LGGM approach. Fig. 3 and fig. 4 present 
the histograms of mean and variances for the computed 
probabilities. For both networks with KDE and GGM, the 
conditional Gaussian distributions fluctuate close to low means, 
while the LGGM approach covers a wider range. This is due to 
the fact that conditional dependencies are modeled by the sum 
of parental means, while with our modeling conditional 
distributions are more depended on the experimental data. This 
is also conducted by fig. 5 where is presented the histogram of 
the expression data. 

The last step in evaluating the algorithm was the 
examination of inference of the effects on genes and proteins 
for different time stages. 

For this purpose, we included in the studied carbohydrate 
pathway the 13 genes (7 ‘significant’, 6 ‘unrelated’ genes), as 
presented in table I. In order to verify algorithms performance 
we compared our results to the implied interactions of the 
studied pathway for different time stages. 

Table IV summarizes the effects implied by the 
observations of the relevant genes for this pathway including 
the above mentioned 13 additional genes. The first column 
shows the applied algorithms in modeling the conditional 
probability distributions while the second column provides the 
implied genes on which the inference is focused. The numbers 
in parenthesis imply the picked threshold according to fig.2. 
The third and the fourth column show the implied interactions 
from inference using KDE, GGM and LGGM in revealing 
network structure. 

Our analysis of sparse experimental data allowed us to 
generate gene-protein networks and illustrate 3 key results 
focusing on the outcome interactions of the ‘significant’ genes 
of the KDE method (table IV). First, we observe that the 
implied genes from 2nd column interact with genes from the 3rd 
column, most of which are involved in carbohydrate 
metabolism. These gene-pairs are indirectly interconnected, 
according to ATTED-II [15].  

Second, we reveal new gene-gene (directly or indirectly) 
interactions between the implied genes and the genes showed 
in the 3rd column, including interactions with the ‘unrelated’ 
genes.  Interestingly, the ‘unrelated’ gene At3g17520 has 
inference significance and is a member of the group 4 late 
embryogenesis abundant (LEA) protein genes [14]. The 
presence of their encoded LEA proteins is related to the 
adaptive response of higher plants caused by adverse 
conditions to maintain normal metabolism [18].  

Third, we highlight new gene-protein interactions between 
the ‘significant’ genes and two enzymes (4th column), the 
fructose 1,6-biphosphate aldolase 6 (AtFBA6), which is a key 
enzyme in glycolysis and gluconeogenesis in plant cytoplasm 
and may have crucial role in stress and sugar signaling [19], 
and the plastidial glyceraldehyde 3-phosphate dehydrogenase, 
A subunit (GAPA) that participates in the reductive carbon 
cycle and also is involved in response to sucrose stimulus [20].  

The observed gene-gene and gene-protein interactions 
between the various ‘significant’ genes with LEA gene or 
GAPA and FBA protein, should be experimentally analyzed in 
order to find their possible associations or cross-talks between 
carbohydrate metabolism and other pathways  during seed 
development in A. thaliana.   

Figure 4.  Comparison between GGM and LGGM . (Fig. 4) 
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TABLE IV. SIGNIFICANT INTERACTIONS FROM INFERENCE 

 Observed Produced interactions 

                                    
 Gene-Gene  

          
Gene-

Proteinb 
KDE 
(0.4) 

At2g01140 At2g21170     At2g21330c At1g32060c    

p496b 
p532b 

At5g60760 At3g12780 At3g26650 
At2g36460 At1g42970 At1g79550   
At1g13140 At3g52930 At3g17520a 
At1g04410   

At5g52920 At3g12780  At2g36460 At2g21330c p496b 
p532b At5g60760   At1g09780 At3g26650 

At1g79550 At2g21170  
At1g73370 At2g21330c  At5g60760 At3g12780 p496b 

p532b At3g26650 At2g36460 At1g42970
At2g21170   

At1g35580 At2g21170   At2g21330c At5g60760 p496b 
p532b At3g12780 At3g26650   At2g36460   

At1g42970     At1g79550     At2g01140 
At1g32060c   

At5g22510 At2g21170  At3g12780 At2g36460 p532b 
At2g21330 At1g04410 At2g01140 
At4g14630d At1g13140d At1g32060 
At1g42970     At1g79550  

LGGM 
(0.4) 

At2g01140 At5g37180   At4g38970 At2g21330c    
At1g35580   At1g32060c  

At5g52920 At1g35580  At5g37180 At2g21330c  
At1g32060   At4g38970  

At1g73370 At2g21330c    At1g09780 At1g35580  
At5g37180    At4g38970   At1g32060

At1g35580 At5g37180     At4g38970    At2g21330c   
At1g32060c   

At5g22510 At1g73370     At5g37180   
GGM 
(0.7) 

At2g01140 At2g36460  At3g43190 At3g27190  At1g13140c At1g09780c  
At5g52920 At3g43190     At3g17520a   
At1g73370 At3g43190d   At1g09780 At3g17520a  
At1g35580 At3g43190d  At1g09780 At3g17520ac  
At5g22510 At3g43190d  At1g09780c At3g17520a  

LGGM 
(0.7) 

At2g01140 At1g09780c  At3g52930 At1g35580    
 At1g13140c At1g30120 At2g22780

At3g17520a   
At5g52920 At1g09780    
At1g73370 At2g39470      At1g09780   
At1g35580 At3g17520ac    
At5g22510 At1g09780c    

a. At3g17520 is underlined because of inference significance. b. p496 protein is encoded by 
At2g36460 and p532 by At3g26650 gene, respectively. c. overlapped genes between KDE(0.4)-
LGGM(0.4) and GGM(0.7)-LGGM(0.7) are marked in bold. d. unrelated genes are marked in italic. 

V. DISCUSSION AND CONCLUSION 
Clearly, KDE models quite well the verified associations 

between the participating genes/proteins, as the majority of the 
affected genes/proteins are located close to the processes of the 
carbohydrate metabolism pathway. On the contrary, GGM 
seems to capture less of those associations, some of which are 
also supported by the observed genes.  From these observations 
it is concluded that KDE performs better on the prediction of 
network construction. Both for KDE and for GGM networks 
the conditional probabilities are modeled by our non-linear 
approach. Comparing those networks with the corresponding 
LGGM, we can identify a major advantage for our framework 
in revealing indirect biological associations.  
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