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Abstract — We present a fully automatic model based system for 
segmenting bone MR images of the knee. The segmentation 
method is based on a fast Active Appearance Models (AAM) 
based on canonical correlation analysis algorithm (CCA-AAM) 
where the dependency between texture residuals and model 
parameters are estimated in fast manner. The model is built from 
manually segmented examples from the knee images.  The model 
has been applied to some challenging knee MR images. 
Experiments show that CCA-AAMs based segmentation, while 
requiring similar implementation effort, consistently outperform 
segmentation model based traditional AAM. Finally, we show 
results on knee image to illustrate the performance that are 
possible. 
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I.  INTRODUCTION  

Fully automated segmentation of bone and cartilage 
could be massively beneficial in clinical trials and in the 
orthopaedic industry. Quantitative image analysis of cartilage 
from knee MRI is a well established method but its use in 
medium to large scale clinical studies has been hindered by 
the need for manual segmentation of the cartilage. Manual 
segmentation has been shown to be sufficiently sensitive to 
detect change [5], but is labour intensive, taking up to several 
hours per image, which impacts on the size of clinical trials 
and cost. Small trials are less well powered and less likely to 
detect a change. In orthopaedics, detailed information from 
MR and CT can be used to plan for the best positioning of 
surgical cuts, allow intra-operative plan registration and 
inform prosthesis design. We have developed a statistical 
model-based segmentation method for the analysis of bone, 
cartilage and other soft tissues to meet these needs. The model 
is based on the Active Appearance Models AAM of Cootes et 
al [7], in which the statistics of shape and image information 
are calculated from a training set of images and used to match 
to new images.  

The goal of AAM is to find the model parameters that 
generate a synthetic image as close as possible to a given input 
image and to use the resulting AAM parameters for 
interpretation [1,5]. Matching the model and target image is 
treated as an optimization problem, i.e., the problem of 

minimizing the texture residual with regard to model 
parameters. Provided that the model is roughly aligned with 
the target image, the relation of texture residuals and 
parameter updates can be modeled as a class of tissue [1,5]. In 
the traditional AAM [5], the mapping from error images to 
AAM parameters is modeled by a linear regression approach 
such as linear least-squares estimates. Herein, [5], the 
regression estimates were replaced by a simplified Gauss-
Newton procedure, where the Jacobian matrix is evaluated 
only once by numerical differentiation from training data. 
Throughout this paper, we will refer to this as standard 
approach.  Both approaches are similar in the sense that they 
assume that the error surface can be approximated well by a 
quadratic function. The main advantage of the latter approach 
[7] is that, during training, not all different images have to 
used. Various approaches to increase convergence accuracy of 
the AAM have been proposed in [1]. Shape AAM [3] update 
only pose and shape parameters during segmentation, while 
gray-level parameters are computed directly from the image 
sample. This allows the AAM to converge faster but the 
failure rate increases. Direct appearance models [7] predict 
shape parameters directly from texture. The convergence 
speed of AAM for tracking applications is investigated in [6]. 
These modifications of the AAM improve the convergence 
speed and the quality of the results by reducing either the 
number of parameters that are to be optimized or the 
computational cost. 
 

II.  SEGMENTATION METHOD 
An appearance model is a statistical model of the shape 

of a structure and associated imaging information. It is useful 
to process the imaging information further to obtain feature 
response images such as gradients, corners and other points of 
interest [1]. 

A. ACTIVE APPEARANCE MODELS 
The concept of AAM as described in [5] is based on 

the idea of combining both shape and texture information of 
the objects to be modeled. First, the shape vectors 

( )1 1,..., , ,...,
Ti i i i i

n nx x y y=x  . 1,...,i N= of the N training images 
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are aligned using Procrustes analysis. The images are warped 
to the mean shape x  and normalized, yielding the texture 
vectors ig . By applying Principal Component Analysis (PCA) 
to the normalized data, linear models are obtained for both 
shape:  
 s s= +x x P b   (1)
  
and texture: 
 g g= +g g P b  (2) 
Where x ; g are the mean vectors, sP , gP are sets of 
orthogonal modes of variation (the eigenvectors resulting from 
Principal Component Analysis) and sb , gb are sets of model 
parameters. A given object can thus be described by sb and 

gb . As sP ; gP may still be correlated, PCA is applied once 
more using the following concatenated vector: 

 
( )

( )
T

s s s s
T

g g

⎛ ⎞−⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

W b W P x x
b

b P g g  (3)

  
where sW is a diagonal scaling matrix derived from the value 
ranges of the eigenvalues of the shape and texture 
eigenspaces. This yields the final combined linear model 

c=b P c , where ( )TT T
c cs cg= +P P P  . Shape free images and the 

corresponding shapes defining the deformation of the texture 
can be expressed directly using c by: 
 
 1

s s cs
−= +x x P W P c  (4)

  
and the texture by:  
 
 g cg= +g g P P c  (5) 
  
To enable the model to deal with rotation, scaling s , and 
translation the additional model parameters t , capturing 
scaling and rotation and u , modeling image contrast and 
brightness, are introduced. The resulting AAM model 
represents shape and texture variation of image content 

utilizing a single parameter vector ( ) qTTT Rutcp ∈= . 

B. FAST APPEARANCE MODELS  

We train the AAM where model parameters p  generate 
learned images ( )mI p , the AAM for an optimal match 
minimizes the difference between a given image mI  and the 
learned image ( )mI p . The AAM for the model 
parameters p can be guided by using prior knowledge about 
how the different images correlate with the parameter 
displacements. This prior knowledge is obtained during the 
training step. During each search step, the current image 

residual between the texture model ( )mg p and the sampled 

image patch ( )sg p  is computed as: 
 

 ( ) ( ) ( )s mr = −p g p g p  (6)
  
The search procedure aims at minimizing the sum of square 
(pixel) error: 

 ( ) ( ) ( )1
2

Ter =p r p r p  (7)

  
Following the standard Gauss-Newton optimization method 
one approximates (linearizes)  using the first-order Taylor 
expansion: 

 
( ) ( )+ Δ −Δ =

Δ Δ
r p p r pr

p p  (8)

  
The derivative of with regard to p and setting it to zero gives: 
  
 ( )Δ = −p Rr p  (9)
  
Where  

 
1T T−

⎛ ⎞Δ Δ Δ= ⎜ ⎟Δ Δ Δ⎝ ⎠

r r rR
p p p

 (10)

  

Where 
Δ
Δ

r
p is calculated during training using numeric 

differentiation. 
During training, each parameter is displaced from its optimal 
value in h steps from -1 to +1 standard deviations, and a 
weighted average of the resulting difference images over the 
training set. Each iteration updates the AAM parameters 
using: 

 
estimated s= + Δ

Δ = −
p p p

p Rr  (11)

  
At each of these scaling steps, the image patch is compared to 
the learned image ( )mI p [7]. 
 

C. CANONICAL CORRELATION ANALYSIS  
Canonical Correlation Analysis is a very powerful tool 

that is especially well suited for relating two sets of 
measurements. Given two zero-mean random vector data sets 

pRx ∈  and qRy ∈ , CCA finds pairs of 

directions xw and yw that maximize the correlation between 

the projections T
xx = w x and 

T
yy = w y . More formally, the 

directions can be found as maxima of the function: 
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ρ = =

w C w

w C w w C w  (12)

  

where
pp

xx RC ×∈  and 
qq

yy RC ×∈ are the within-set 
covariance matrices of x and y  (in the context of CCA, the 
projections x and y are also referred to as canonical variates, 

while
qp

xy RC ×∈ denotes their between-set covariance 

matrix. The factor pairs iw can be obtained as eigenvectors of 
a generalized eigenproblem [20]: 

 

 ( )
{ }
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,
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,

, , 0, 0,..., 1

i i
x y

Ti iT iT
x y
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ρ

ρ ρ
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(13) 

 

The extremum values ( )iρ w , which are referred to as 
canonical correlations, are obtained as the corresponding 
eigenvalues. 

III.  FAST CCA-AAM 
In the standard AAM search algorithm, a linear 

function (see (3)) is used to map texture residuals ( )r p  to 

corresponding parameter displacements ( )Δr p . In The AAM 

algorithm, the linear features of ( )r p are extracted using the 

CCA of ( )r p and p . 

A. CCA-AAM TRAINING 
For each training image, we generate a set of synthetic 

images by perturbing the optimal AAM match, i.e., 
( )o + Δr p p , where the optimum parameter vector op  is 

obtained by mapping the training image texture and shape into 
the eigenspace model and the components of Δp are randomly 
drawn from uniform distributions from -1 to +1 standard 
deviation.  

 
IV. EXPERIMENTS 

A. SETUP 
Experiments were conducted on 10 knee images 

manually annotated by a medical expert (Fig. 1). Following 
the AAM training scheme, a set of different images and 
corresponding parameter displacements were obtained by 
randomly perturbing the AAM modes in the interval -1 to +1 
standard deviation. While the calculation of R by numerical 
differentiation requires separate variation of each AAM mode, 
CCA-AAM training allows simultaneous variation of all 
modes. To compare the performance in both cases, AAM 
segmentation based model was performed on the test data 
using varying lengths of steps. 

B. FASTER TRAINING 
In Fig. 1, the mean landmark error (point to point distance) 
over the corresponding number of overall search steps until 
convergence is depicted. A full rank 10 (bones), CCA 
employed ranks of 9. It can be observed that the CCA 
convergence speed with almost equal final accuracy is 
considerably better than the one of the traditional AAM. The 
time for an iteration is dominated by the warping in each of 
the texture comparison steps.  

 

 
Figure 1. Segmentation results using AAM model. 

 

V. CONCLUSION 
CCA-AAMs introduce a search algorithm based on 

canonical correlation analysis (CCA). CCA efficiently models 
the dependencies between image residuals and parameter 
correction. Taking advantage of the correlations between these 
two signal spaces, CCA makes sensible rank reduction 
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possible. It accounts for noise in the training data and thereby 
yields significant improvements of the AAM search 
performance in comparison to the standard search approach. 
After computing CCA, linear regression is performed on a 
small number of linear features which leads to a more accurate 
parameter prediction during search, eliminating the need for 
the expensive variable step size search scheme employed in 
the standard approach. Empirical evaluation on two data sets 
shows that the CCA-AAM search approach is up to four times 
faster than the standard approach. As fewer training samples 
are needed, training is up to five times faster.  
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