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Abstract—We present a new interactive segmentation framework 
to delineate the prostate from MR images.  We first explicitly 
address the segmentation problem based on fast globally Finsler 
Active Contours (FAC) by incorporating both statistical and 
geometric shape prior knowledge. In doing so, we are able to 
exploit the more global aspects of segmentation by incorporating 
user feedback in segmentation process. In addition, once the 
prostate shape has been segmented, a cost functional is designed 
to incorporate both the local image statistics as user feedback and 
the learned shape prior. We provide experimental results, which 
include several challenging clinical data sets, to highlight the 
algorithm’s capability of robustly handling supine/prone prostate 
segmentation. 

Keywords— Active contours, Bhattacharyya distance, User 
interaction, shape prior, Total variation. 

I. INTRODUCTION 
Segmentation the prostate boundary on clinical images is 

useful in a wide spread range of applications including 
calculation of prostate volume pre- and post-treatment, 
radiotherapy planning [1, 2, 16], dosimetry [14], and for 
creating patient-specific anatomical models [18]. Prostate 
volume is routinely asked as part of imaging evaluation as it 
helps in clinical decision making [2, 15]. However, manual 
segmentation of the prostate boundary is highly time-
consuming and subject to inter- and intra-reader variability. 
Automatic segmentation based on deformable models such as 
Active Contour (AC) models have been widely used for 
prostate segmentation [7,12] and can be split into two classes, 
those which fully rely on image data [9], and those which 
incorporate prostate prior shape information [6, 10, 11]. To 
deal with the complex prostate anatomy and partially missing 
boundaries, the shape of prostate is approximately assumed to 
be elliptical. In many cases, this segmentation is a two-part 
problem. First, one must properly align a set of training shapes 
such that any variation in shape is not due to alignment. Then, 
the segmentation based on deformable models can be 
performed under the constraint of the learned prostate shapes. 
However, the alignment of prostate shapes becomes 
increasingly difficult for a large variation in training shapes and 
when the training sets increase, and this is not readily allowed 
by existing methods. To overcome this problem, we 
investigated an interactive Finsler Active Contours model to 
boost the performance of segmentation results. The Finsler 
Active Contours (FAC) model has been proposed as a natural 

way for adding directionality to the Active Contours model [5]. 
This allows the AC to favor appropriate locations and suitable 
directions [5, 12]. 

In this paper, we proposed a bi-stage interactive prostate 
segmentation method based on fast globally active contours 
incorporating prior shape to segment the prostate from MR 
images. Then, our segmentation method based fast Finsler AC 
incorporating shape prior is applied to delineate prostate 
boundary. User intervention is then needed to guide our 
method to fine-tune the final segmented shape of prostate. 

Finally, we apply some post-processing operations to 
further refine prostate boundaries. This paper organized as 
follows. Section II describes the basics of our method. In 
Section III, the experimental results obtained using our method 
are illustrated. Conclusions and future work are presented in 
Section IV. 

II. SEGMENTATION METHOD  
The new framework which we proposed for prostate 
delineation consists of two main steps: the first step is 
applying a FAC model incorporating prostate shape prior. The 
second step is refining the prostate shape by user feedback. 
Each of these steps is described in detail in next section. 

A. Finsler active contours in the Total variation framework 
We are interested in a globally interactive segmentation of an 
object Ω in Total Variation (TV) framework through the 
characteristic function [3,9]. We proposed to segment prostate 
shape using a fast version of the interactive Finsler Active 
contours in the TV framework. We proposed a two stage fast 
globally Finsler Active Contours (FAC). In the first step, our 
fast globally FAC incorporated both statistical region, 
geometric shape and in the second step, the final segmentation 
is completed by adding an interactive user feedback. 
Basically, for an image 2: II R R+Ω ⊂ → defined on an open 
and bounded domain IΩ . The segmentation by Finsler AC 
consists in extracting one or more regions domain Ω from 
image I .  For a curve placed around an object, segmentation 
based on FAC model consists in finding a regular closed 
curve ∂Ω  by deforming and moving the curve toward the 
object boundary. Our fast interactive segmentation can be 
modelled as the following energy criterion [5, 9, 20]: 
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 (1) 

 
Where fk is the anisotropic  boundary descriptor, ( )da x is 
surface element, 1λ , 2λ and 3λ are the calibration factors and the 
characteristic function χ framework is defined as: 

 ( ) 1
0

if
if

χ
∈Ω⎧

= ⎨ ∉Ω⎩

x
x

x
 (2) 

The region descriptor rk  is defined in the same manner as in 
[4], sk is the shape prior descriptor defined in the same manner 
as in [6] and refΩ the reference prostate shape (section C) and 

userk the interactive user feedback descriptor which will be 
defined in section II.  

To allow our segmentation model to detect both edge and its 
direction, we assume that anisotropic boundary descriptor is 
defined as follows: 

 ( ) ( )2 1,

1, .max ,
1

fk
G I χ

σ

χ
≤

∂Ω = ∇
+ ∇ ∗ p

x p x  (3) 

Where the potential field, p , is defined as ,N T⎡ ⎤= ⎣ ⎦p
G G

 and N
G

is 

the unit inward normal vector andT
G

the unit tangential vector 
(Fig. 1). This potential field allows the FAC to deform and 
move toward object of interest. This propriety makes the 
proposed segmentation method much faster since the topology 
of the deformed curve is more like the object to be segmented.     
The nature solution of (1) was already shown for the TV [3, 9] 
by rewriting the anisotropic boundary descriptor in TV based 
characteristic function and extended to general Wulff shape 
families. The dual energy of (1) is given by: 
 ( ) ( )min 0,

I

FACE K d
Ω

= ∫p x  (4) 

Where
( ) ( ) ( ) ( )1 2 3, , ,r s ref user ROIK div k k kλ λ λ= + Ω + Ω + Ωp x x x  

which is maximized with respect to the potential field 
p subject to 1≤p , thus the primal energy of Finsler AC in  
(1) and dual energy functional (4)  can be formulated in a 
primal-dual setting as: 
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                    (5) 

and the respective gradient descent (for χ ) and ascent (for the 
potential field p ) equations are: 
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Figure 1.  Illustrating example of evolving Finsler AC curve around synthetic 

guided by the two components both normal and tangential. 

where τ is an artificial time parameter, 0χ is the initialized 
characteristic function corresponding to the initial  contour 
curve 0∂Ω . In the next section, we introduced region based 
term used in our fast segmentation based model. 
  

B. Region energy term  
The second energy term incorporated in our Finsler AC is 
defined as region energy based term. We proposed in to 
incorporate this term as statistical Bhattachryya distance [4, 
18]. The region energy based term is usually defined as a 
domain integral of the region descriptor rk  : 

( ) ( ) ( ) ( )
0 0

, , , ,data r f bE I k d p I p I dχ χ χ χ
Ω Ω

= =∫ ∫x x x           (7) 

In this study we maximize the statistical Bhattachryya distance 
between the foreground density probability ( ),fp I χ  of the 
object to be segmented and the background density 
probability ( ),bp I χ such as in [12]. Thus, we use the gradient 
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shape [20] to calculate the Eulerian derivative of dataE  in the 
normal direction is as follows:  
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where the region velocity is expressed as: 
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We therefore estimate density by Parzen kernel, which can 
better describe the regions. This method estimates the 
probability density function based on the histograms, using a 
smoothed Gaussian kernel( see Fig. 2): 

 ( ) ( )( )
/

/ /
/

1,
f b

f b f b
f b

p I G I I dσχ χ
χ Ω

= −∫ x  (10) 

where Gσ denote the Gaussian kernel and 2σ  the variance. 
 

…  
1
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a) shapes learned  as binaries surfaces  
 

 
b) segmentation of the object usign both statistical and geometric shape, un 
green color initial contour curve and in red final segmentation done by our 

Finsler AC 
Figure 2.  Automatic segmentation using Finsler AC based statistical and 
geometric shape prior. 

 

C. Shape Prior energy term  
The shape prior descriptor is defined as the Euclidean distance 
between the evolving Legendre moment [6] region ( )η Ω and 

the reference shapes{ }, 1,...,i
ref i Nχ = : 
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∑
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where the pqη are defined as follows, using the geometric 
moments pqM and the coefficients pqa of the Legendre 
polynomials [13]: 
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4
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Where ( ) ( ) ( )2
2

1 p q
pq p qM x x y y dxdy+ +

Ω

Ω = − −
Ω

∫  and 

( ),x y are the shape barycenter coordinates In the figure 3, the 
object shape is segmented using 20 learned shape prior and the 
segmentation is done using statistical and geometric shape 
prior. In the next section we introduced our interactive user 
term used to suitability segmentation method. 
 

D. Interactive user energy term  
Let ix , 1,...,i n=  denote the set of n user feedback points. We 
define [ ]: 0,1M Ω → . The function :L Ω → \ represents the 
user feedback: 

 ( ) ( ) ( ){ } ( )
1

1
ROI

n

i
i

L dχ χ δ
= ∈Ω

= + − −∑ ∫
z

y y y z x z  (13) 

where ( )δ z is the Dirac delta function and ROIΩ is local region. 

Hence, for each { } 1

n
i i=

∈y y : 

 

 ( )
( )

0
1 \L

not markedχ

∈ Ω⎧
⎪= ∈ Ω Ω⎨
⎪
⎩

x

x

y
y y

y
 (14) 

( ) 0L =x if the feedback point is within the segmented region 

of the first phase and ( ) 1L =x if the feedback point is situated 

in the background. Finally, if the pixel x is not marked, then 
the indicator function is identical to indicator function 
( ( ) ( )L χ=x x ). (see Fig. 3.) 
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Figure 3.  Segmentation refinement using 5 user feedback, each point 

selected uses 4 pixel neighbors (blue color)as ROIΩ . 

 
The indicator function ( )L x is used in the formulation of the 

energy term which incorporates the user feedback: 

 ( ) ( ) ( )
2

22 2,
ROI

user ROIE L e d dσχ
−

−

∈Ω ∈Ω

Ω Ω = −∫ ∫
x y

x y

y x x y  (15) 

 
The algorithm supports two modes of user feedback. The user 
may either draw a cross such that its eccentricity and 
orientation determines the entries of the variance coefficient 
σ or can provide a point-wise mouse click. 
The interactive energy functional userE is minimized, w.r.t the 
evolving domain ( )τΩ , is done with the shape derivative tool 
[4,10]. Thus, the Eulerian derivative of userE  in the normal 
direction is as follows: 
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where the interactive velocity is expressed as: 
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x y

y

x y x y  (17) 

 
In the figure below (Fig. 4) we illustrate our segmentation 
process.  

 
 

 
Figure 4.  Final segmentation based interactive Finsler AC in red color 
superposed on the automatic segmentation based Finsler AC (white color) 
using statistical and geometric shape. 

III.  FAST ALGORITHM FOR  INTERACTION SEGMENTATION  
 
A fast and accurate minimization algorithm for TV problem is 
introduced in [7, 14].  We propose to solve our interactive 
segmentation problem in two steps. In the first step: 
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In the second step the segmentation results is updated using 
the interaction with user. 

497



[ ]

( ) ( )
( ) ( )

( )

0

0
0 0

1

1

11 1

2

1

,
1 6

{

,

, , ,

,
}

k k

k k k

k
rk k

k
s ref user user ROI

user ROI

k

N T
e

div k

k k

update k

χ

ε

χ χ ε

τ χ

λ χ
χ χ τ

λ χ χ λ χ

χ

χ

+

+

+ +

+

←

←
← −

− >

← − Δ ∇

⎧ ⎫−⎪ ⎪← + Δ ⎨ ⎬
− −⎪ ⎪⎩ ⎭

←final

first stepχ
p

begin

while do

p p

p x

χ

x x

x

end

 

IV. RESULTS 

A. Data  and protocol 
In this section, we provide prostate segmentation results for 
two data sets obtained from Saint Philibert Hospital Lille 
France. The MR images are pre-processed through the 
following pipeline: 1) spatial registration, 2) noise removal 
and 3) intensity standardization. We use the T1 weighted and 
T2 weighted MR sequences. The image sizes are 256x256 
pixels, each slice thickness is 3.5mm with spacing between 
slices of 3.9 mm. 

B.  Segmentation Results 
The first row shows the segmentation result by the proposed 
method, the second row illustrates the ground truth outlined by 
an expert radiologist, and the third row provides a comparison 
between our result and ground truth. We observe that our 
segmentation result is sufficiently close to the result provided 
by a radiologist. In addition to visual evaluation, we use Dice 
measure (DSC) to quantitatively evaluate the segmentation 
result. The Dice measure is defined as: 

 ( ), 2
A B

DSC A B
A B

=
+
∩

 (18) 

is where is the segmentation result and B the ground truth and 
the operation ⋅ denotes the number of segmented pixels. The 

surface A  represents the segmentation result, B is the ground 
truth provided by an expert radiologist, and denotes the 
number of segmented pixels. 
To quantify the accuracy of the segmentation, we measured 
the Dice Similarity Coefficient (DSC) between the manually 
segmented prostate and our segmentation method.  
We provide not only qualitative results (see Table 1), but also 
give quantitative results in the form of the DSC to illustrate 
the viability of the proposed method in the context of prostate 
segmentation.  

 

 
Figure 5.  Segmentation by Finsler AC.  In blue color traditional FAC, red 
color segmentation results of our method (automatic with user feedback) and 
in yellow color manual segmentation.  

 
To quantify the accuracy of the segmentation, we measured 
the overlap between the segmented prostate areas defined by 
manual segmentation and our segmentation method.  

V. CONCLUSION 
This paper has presented an interactive prostate segmentation 
MR images method based active contours. The segmentation 
is achieved in two stages. In the first stage, the patient prostate 
is segmented using a fast globally FAC incorporating 
statistical and shape prior knowledge. The position and 
orientation are dependent on prior for the boundary 
segmentation in Finsler metrics. Finsler active contours 
provide an alternative approach to integrating image-based 
priors on the location and orientation of the traditional 
boundary descriptor. Future work will address extending other 
classes of energies that can be optimized in TV framework. 

 

REFERENCES 
[1] R. Zwiggelaar, Y. Zhu, and S. Williams, “Semi-automatic segmentation 

of the prostate,” Lecture Notes in Computer Science, pp. 1108–1116, 
2003. 

TABLE I 
QUANTITATIVE EVALUATION OF THE SEGMENTATION  

Patient no DSC of FAC  DSC of FAC TV 

Patient no 01 80,02% 85,63% 

Patient no 02 79,1% 82,69% 

Patient no 03 75,06% 79,23% 

Patient no 04 77,21% 79,75% 

Patient no 05 75,7% 79,30% 

 

498



[2] G. Villeirs and G. De Meerleer, “Magnetic resonance imaging (MRI) 
anatomy of the prostate and application of MRI in radiotherapy 
planning,” Eur. J. Radiol., vol. 63, no. 3, pp. 361–368, 2007. 

[3] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, S. Osher, “Fast 
Global Minimization of the Active Contour/Snake Model”, JMIV, vol. 
28, no. 2, 2007. 

[4] O. Michailovich, Y. Rathi, A. Tannenbaum, “Image Segmentation Using 
Active Contours Driven by the Bhattacharyya Gradient Flow”, IEEE 
Trans. IP, vol. 16, no. 11, pp. 2787 – 2801, 2007.   

[5] J. Melonakos, E. Pichon, S. Angenent, A.  Tannenbaum, “Finsler active 
contours”,  IEEE Trans. PAMI, vol. 30, no. 3, pp. 412-423, 2008. 

[6] A. Foulonneau, P.Charbonnier, F. Heitz, "Affine-Invariant Geometric 
Shape Priors for Region-Based Active Contours,"IEEE Trans. PAMI, 
vol. 28, no. 8, pp. 1352-1357, August, 2006.  

[7] D. Pasquier, T. Lacornerie, M. Vermandel, J. Rousseau, E. Lartigau, N. 
Betrouni, “Automatic Segmentation of Pelvic Structures From Magnetic 
Resonance Images for Prostate Cancer Radiotherapy”, Int Jnl of 
Radiation Oncology, Biology, Physics, Vol. 68, no. 2, pp. 592-600, June 
2007.  

[8] S. Mahdavi, N. Chng, I. Spadinger, W.J. Morris, S.E. Salcudean, “Semi-
automatic segmentation for prostate interventions”, Medical Image 
Analysis, vol. 15, no. 2, pp. 226-237, 2011 

[9] F. Derraz, “Optimal segmentation by fast binary geometric active 
contours, Phd Thesis, 2010. 

[10] V. Duay, N. Houhou, J.P Thiran,"Atlas-based segmentation of medical 
images locally constrained by level sets," in IEEE ICIP 2005, vol. 2, no., 
pages. 1286-1289.  

[11] S. Martin, V. Daanen, and J. Troccaz, “Atlas-based prostate 
segmentation using an hybrid registration”, Int J CARS, vol. 3, pp. 485-
492, 2008. 

[12] D. Freedman, R. Radke, T. Zhang, Y. Jeong, D. M. Lovelock, and G. 
Chen, “Model-Based Segmentation of Medical Imagery by Matching 
Distributions”, IEEE Transac. on Medical Imaging ,vol. 24, no. 3, pp. 
281-, 2005 

[13] S. Klein, M. Staring, and J. P. W. Pluim, “Evaluation of optimization 
methods for nonrigid medical image registration using mutual 
information and B-splines,” IEEE Trans. Image Process. Vol. 16, no. 12, 
pp. 2879–2890, 2007 

[14] D. Pasquier, L. Peyrodie, F. Denis, Y. Pointreau, G. Bera, E. Lartigau, 
“ Segmentation automatique des images pour la planification 
dosimetrique en  radiotherapie“, Cancer/Radiotherapie, vol. 14, S.1, pp. 
6-13, 2010. 

[15] S.Vikal, S. Haker, C. Tempany, and G. Fichtinger, “Prostate contouring 
in MRI guided biopsy,” in SPIE Conf., 2009, vol. 7259, p. 144. 

[16] D. Pasquier, T. Lacornerie, M. Vermandel, J. Rousseau, E. Lartigau, and 
N. Betrouni, “Automatic segmentation of pelvic structures from 
magnetic resonance images for prostate cancer radiotherapy,” Int. J. 
Radiat. Oncol., Biol., Phys., vol. 68, no. 2, pp. 592–600, 2007. 

[17] Xin Liu, D. L. Langer, M. A. Haider, T. H. Van der Kwast, A. J. Evans, 
M. N. Wernick, and I. S. Yetik, “Unsupervised Segmentation of the 
Prostate Using MR Images Based on Level Set with a Shape Prior”,  in 
IEEE EMBC 2009. 

[18] A. Tsai, W. Wells, C. Tempany, E. Grimson, A. Willsky, “Mutual 
information in coupled multi-shape model for medical image 
segmentation”, Medical Image Analysis, vol.  8, pp.  429-445, 2004. 

[19] L. Gong, S. D. Pathak, , D. R. Haynor, P. S. Cho, and Y. Kim, 
“Parametric Shape Modeling Using Deformable Superellipses for 
Prostate Segmentation, IEEE Trans. MI, Vol . 23, no. 3, pp. 340-349, 
2004 

[20] G. Aubert, M. Barlaud, O.  Faugeras, S., Jehan-Besson,“Image 
segmentation using active contours: Calculus of variations or shape 
gradients?”, SIAM Applied Mathematics, vol.  63, 2002. 

  

499




