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Abstract—This paper presents an in-depth look of how FPGA 
computing can offer substantial speedups in the execution of 
bioinformatics algorithms, with specific results achieved to date 
for a broad range of algorithms. Examples and case studies are 
presented for sequence comparison (BLAST, CAST), multiple 
sequence alignment (MAFFT, T-Coffee), RNA and protein 
secondary structure prediction (Zuker, Predator), gene 
prediction (Glimmer/GlimmerHMM) and phylogenetic tree 
computation (RAxML), running on mainstream FPGA 
technologies as well as high-end FPGA-based systems (Convey 
HC1, BeeCube). This work also presents technological and other 
obstacles that need to be overcome in order for FPGA computing 
to become a mainstream technology in Bioinformatics. 

Keywords— Bioinformatics algorithms, FPGA based systems, 
high performance 

I.  INTRODUCTION 
Bioinformatics applications are characterized by immense 

computational loads and extremely large datasets. At the same 
time, technologies such as reconfigurable computing, also 
known as FPGA (Field Programmable Gate Array) computing, 
are reaching a high level of maturity; also, modern FPGA 
devices offer substantial hardware resources. Reconfigurable 
computing, is the field in which algorithms are mapped directly 
to configurable hardware resources. Despite clock speeds that 
are typically 1/10th of those in general-purpose computing, by 
exploiting parallelism at all levels, speedups of up to three 
orders of magnitude can be achieved vs. software executing the 
same algorithms, whereas even 2x speedups are considerable 
due to the immense computational times of these algorithms. 
The cost per computation and watts per computation are also 
quite favorable for reconfigurable computing, and hence it is 
worth examining this form of computing as a platform for 
bioinformatics applications.  

New, powerful FPGA-based platforms [14] have emerged 
during the last two years, ones that combine general-purpose 
computers and FPGAs. These platforms emphasize on the 
high-speed data transmission between the FPGA device and the 
CPU’s main memory, the availability of a conventional CPU 
and the usage of the network for I/O, thus offering integrated 

solutions for the execution of I/O- and memory-intensive 
problems, in which the FPGAs form a tightly coupled co-
processor to the conventional one.  

The contributions of this work include:  

• the presentation of several bioinformatics algorithms, 
which have been mapped on FPGA stand alone 
platforms 

• the presentation of FPGA platform technology barriers 
that need to be overcome before reconfigurable 
technology can offer usable, high performance 
bioinformatics systems 

• the presentation of two modern FPGA-based platforms 
for data intensive problems, such as bioinformatics 
problems, and, 

• the presentation of two case studies for bioinformatics 
algorithms running on modern high-end FPGA-based 
platforms, which show the benefits of this approach. 

Several standalone FPGA-based systems on which 
bioinformatics algorithms have been mapped are presented in 
Section II. Section III presents the state of the art of the new 
generation of FPGA based systems; two bioinformatics 
applications running on these platforms are presented at 
Section IV. Lastly, Section V has conclusions regarding the 
potential of this approach. It should be noted that this work 
gives emphasis on results developed by the authors, as these 
results form the basis for an FPGA-technology-based 
supercomputer for bioinformatics. Additional research results 
from other research groups exist as well, many of which are 
cited (briefly, due to space limitations). 

II. FPGA BASED ARCHITECTURES 
This section presents various FPGA-based implementations 

of bioinformatics algorithms. The main parts of the 
implemented FPGA-based architectures are described and their 
performance is evaluated. Moreover, this section describes the 
advantages and the disadvantages of the FPGA technology for 
the specific bioinformatics algorithms. 
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A. Sequence comparison 
Sequence comparison algorithms compute the degree of 

matching between two or more biomolecular sequences. 
Biologists may use sequence comparison results either as a 
proxy to infer sequence homology or as part of larger 
computational pipelines. Two FPGA-based implementations 
that map sequence comparison algorithms are presented, 
below: 

1) BLAST 
BLAST (Basic Local Alignment Search Tool) [1] is the 

most well-known and widely used algorithm in Bioinformatics. 
BLAST is used to find similarities between genetic sequences 
(queries) and sequence databases. A typical BLAST 
application is to search whether a genetic sequence (query), 
like a gene, is part of a complete genome (database). 

The Technical University of Crete (TUC) has proposed 
several different architectures and implementations of 
standalone FPGA-based platforms for BLAST [2] [3] [4]. In 
particular, [4] presents a software–hardware system 
implementing the complete algorithm. This system produces a 
superset of the official BLAST software distribution results. 
The official BLAST implementation is distributed by the 
National Center for Biotechnology Information (NCBI). In 
addition to the TUC architectures, other research groups have 
looked into the BLAST algorithm [5] [6] [7] [8].  

 The most recent TUC architecture takes as inputs a query 
that initializes the system and a streaming database. The 
database is compared against the query in a cache controller -
like scheme, where exact matches between small fragments of 
the database and the query are found. After an exact match is 
found, there is tree-like structure of embedded Microblaze™ 
processors that resolve the final step (extension stage) of 
BLAST. This system has been implemented on a Xilinx 
Virtex-5 FPGA (XC5VTX240). The critical resource for the 
implemented architecture is the internal to the FPGA static 
memories (Block RAMs - BRAMs), due to their use for the 
cache controller-like scheme and the MicroBlaze’s main 
memory. BRAMs were also used to implement FIFOs for the 
communication between several stages of the architecture. The 
clock rate of the implementation was roughly 100 MHZ. 
Actual runs showed that the proposed architecture can achieve 
execution time speedups from 10x to 1000x (depending on 
algorithm variation and dataset size) when compared to the 
execution on a high end server. An additional issue in order to 
realize the above speedup is the input transfer speed. The 
FPGA device does have 64 Gbps aggregate bandwidth, 
however, there is no standalone platform that supports such a 
speed.  

The proposed architecture proved that BLAST can run 
significantly faster vs. a conventional computer but there are 
certain problems that should be faced. Also, the system 
produces a small superset of the NCBI results and some of the 
output metrics are not calculated. 

2) CAST 
One of the most important factors that can affect execution 

speed of BLAST and the quality of its results is the occurrence 
of low complexity regions (LCRs) in protein sequences. LCRs 

are very common in protein sequence databases [9-12] and 
some of them are clearly preserved even between 
evolutionarily distant organisms and have been associated with 
important cellular functionality and diseases [e.g. 10-11]. 
Despite their biological significance, LCRs have been routinely 
masked out of query sequences in BLAST searches to avoid 
the inclusion of large number of spurious hits in the results. 
Traditionally, this procedure was performed by SEG [9], an 
algorithm utilizing Shannon entropy measures to detect LCRs. 
While fast and accurate, SEG is also very aggressive as it was 
designed to detect and mask whole regions that may often 
cover a very large portion of the query sequence. On the other 
hand, CAST [12] was originally designed to perform more 
sophisticated masking by “surgically” removing only the 
amino acid residues skewing the query sequence composition. 
Therefore, in terms of the quality of the results returned by 
BLAST, CAST usually outperforms SEG. The main 
disadvantage of CAST is its computationally intensive nature 
and the large amount of necessary I/O operations. As such, it is 
an ideal algorithm that can be potentially accelerated through 
the use of FPGA technologies.  

An FPGA-based approach for the CAST algorithm was 
proposed in [15], where the inherent parallel characteristics of 
the algorithm were fully exploited in order to accelerate 
execution time. The system receives streams of protein 
sequences in FASTA format and iterates the computation until 
all LCR regions are discovered for each of the input sequences. 
Emphatically, a single instance of the proposed FPGA 
architecture outperforms a multi-threaded software version of 
CAST running on a high-end PC, by 100-1000x depending on 
the benchmark dataset. Even the considerably faster SEG 
algorithm is benchmarked slower, behind the FPGA-based 
CAST, as the FPGA accelerated CAST runs more than 50x 
faster in most cases. The proposed CAST architecture occupies 
just 10% of an average Xilinx commercial FPGA chip, thus 
allowing multiple instances to be utilized on a single FPGA 
device to process multiple protein sequences in parallel. 

B. Multiple Sequence Alignment 
This section describes FPGA-based implementations of 

multiple sequence alignment (MSA) algorithms. 

1) MAFFT 
The MAFFT algorithm [16] is a progressive MSA method 

based on the Fast Fourier Transform (FFT). Software analysis 
of the MAFFT algorithm showed that the sequence alignment 
process, which is the final step of the algorithm, takes up to 
80% of total algorithm execution time, making it suitable for 
execution on an FPGA. Lakka et al. [17] proposed an FPGA-
based IP core that implements the final step of the MAFFT 
algorithm. It takes as input the segments of the sequences with 
their weights and it outputs the aligned sequences with their 
alignment scores. Each MAFFT IP core consists of six-
pipelined stages. First, the input sequences are loaded to the 
internal FPGA block memories (BRAMs). The internal 
memories were used due to the non-streaming nature of the 
algorithm and due to the lack of fast I/O on the specific FPGA. 
The first four implemented stages calculate the gap penalties 
and the weight matrices among the input sequences. The fifth 
stage of the architecture calculates the final alignment score 
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between the aligned sequences and it outputs the homology 
matrix of the input sequences where the sequences are aligned. 
The final stage implements the final modification of the MSA. 
The implemented IP core uses single precision floating point 
arithmetic without losing any accuracy when compared to the 
software implementation, and the results are identical.  

The MAFFT IP core was mapped on a Xilinx Virtex 6 
(XCV6SX475T) FPGA. As described above, the critical 
resource for the implemented IP core is the internal FPGA 
BRAMs, which are used to store the input sequences. Thus, 
depending on the size of the input sequences 1 to 15 parallel 
MAFFT IP cores were mapped on a single FPGA. The clock 
rate of the proposed architecture is 146 MHz for the full 
mapping. Many datasets were used for the validation and the 
evaluation of the MAFFT IP core results and performance. The 
input datasets ranged from 5 sequences with 366 nucleotide 
bases long up to 100 sequences with 1403 nucleotide bases 
long. The speedup that the IP core achieves ranges from 10x up 
to 50x compared to the sequential execution of the algorithm 
on a high end PC.  

2) T-Coffee 
T-Coffee [18] is a progressive constraint-based method for 

MSA and it comprises of three steps. The first step constructs a 
library with the pairwise alignments between all input 
sequences. The second step extends the library by assigning a 
weight for each pair of residues. The final step implements the 
progressive MSA strategy. Profiling of the T-Coffee method 
showed that the most time consuming part of the algorithm is 
the calculation of the alignment score among the input 
sequences. Lakka et al. [17] presented two IP cores for the 
score calculation either for the pairwise alignments or for the 
scores between the lists of nucleotide bases. The calculation of 
the score is based on a 3-dimensional lookup table which is 
pre-loaded into the internal FPGA BRAMs to the IP-core for 
each new input dataset of sequences. Fixed-point arithmetic 
was used for the normalization stage of the final score, without 
losing accuracy vs. the software. The T-Coffee IP core was 
mapped on a Xilinx Virtex 6 (XCV6SX475T) FPGA, 
achieving 146 MHz clock rate. As described above, the internal 
BRAMs are used for the storage of the input sequences 
weights, thus it eliminates parallelism that can be achieved by 
reducing the number of parallel IP cores up to maximum 22. 
The performance of the implemented system depends on the 
size and the nature of the input sequences. The speedup 
achieved by the T-Coffee IP core compared to the sequential 
software implementation varies from 1x up to almost 10x 
without taking into consideration the I/O data transmission. 

C. RNA and Protein Secondary Structure Prediction 
Prediction of RNA and protein secondary structure is of 

great importance in Medicine and Biology as it may highlight 
structural and functional properties of molecules. This section 
presents two FPGA-based architectures for the Zuker and the 
Predator  secondary structure prediction algorithms. 

1) Zuker algorithm 
A typical genetic sequence consists of few thousands of 

bases, which leads to a huge search space for secondary 
structure prediction. The Zuker method decomposes a sequence 

into independent sub-sequences, achieving a huge reduction of 
search space [19]. First, the coefficients for three upper 
triangular matrices are calculated. Second, a back-trace 
algorithm is implemented to extract the actual pairs of the RNA 
input sequence. The values of the matrices are integers 
representing the optimal sub-sequence’s free energy. The 
official edition of the Zuker algorithm is included in the 
UNafold package [20], which was used for this work. Software 
analysis of the algorithm showed that more than 99% of the 
algorithm’s execution time is consumed for the calculation of 
the three matrices.  

Smerdis et al. [21] proposes an FPGA-based IP core that 
implements the first stage of the algorithm on a reconfigurable 
platform. First, the input sequence (with some experimental 
parameters needed for the calculations), are loaded in the 
internal FPGA BRAMs. The implemented system is fully 
pipelined and consists of five basic modules that are used for 
the calculation of the matrices coefficients. Also, the 
implemented system offers high throughput due to its 
accessibility of the proper data for the coefficient calculations. 
The main drawback when mapping the Zuker algorithm on 
reconfigurable technology is the high memory usage. The 
implemented method uses portions of internal memory to store 
the input sequence. It is important that for double sized genetic 
sequence the memory size increases by about four times. 
Smerdis et al. [21] propose the use of external memory (DDR) 
to circumvent the above limitation. The Zuker system 
architecture was fully designed on a Virtex 5 Xilinx 
(XS5VSX240T) device. The clock rate of the design is 100 
MHz with the FPGA utilization almost at 100%. The critical 
resource for the implemented system is the internal BRAMs, 
which eliminates the parallelization of the implemented system 
up to 58 parallel computation cores. The test datasets varied 
from 100 genetic bases up to 800 genetic bases. The 
implemented system offered execution speedup from 3x up to 
10x compared to the sequential software execution on a high-
end PC. In addition to this work, performed at TUC, there exist 
other results of FPGA implementations of the Zuker algorithm 
[22]. 

2) Predator algorithm 
The Predator method [23] predicts the secondary structure 

of a protein sequence. The algorithm consists of four basic 
steps. The first part calculates the secondary structure 
propensities, based on amino acid tendency to form parallel b-
bridges, antiparallel b-bridges, hydrogen bonds and turns. The 
second part of the algorithm searches a protein database with 
560 proteins of known structure for homologs to the input 
sequence. The third part of the method takes as input the 
protein sequence and scores its non-homologous parts. The last 
stage of the method takes as input the output of the first three 
parts and applies some simple rules in order to find the final 
prediction. The Predator algorithm is a computationally 
demanding method in cases of very long input sequences. 
Software analysis of the Predator algorithm showed that 90% 
of the total execution time is spent on the search of homologs 
in the protein database and the scoring of non-homologous 
protein parts. 

Smerdis et al. [21] presented the parallel implementation of 
the Predator algorithm on an FPGA. The implemented system 
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consists of six independent parallel computing modules. Each 
one calculates one of the six possible formations which are 
needed for the first and the second part of the algorithm. Also, 
there is a module that gathers all the results from the previous 
modules and outputs the final results. The input sequence and 
the 560 proteins of known structure are stored in internal 
FPGA BRAMs. This architecture of the Predator system was 
mapped on a Xilinx Virtex 5 FPGA device (XC5VSX240T). 
The system was evaluated with several input sequences and the 
secondary structures predicted were verified against the 
original software implementation. The clock rate that the 
system achieved is 298 MHz. The performance speedup that 
the implemented system achieved when compared to the 
sequential software execution varies from 30x up to 50x. 

D. Gene Prediction  
Gene identification is one of the most important steps in the 

process of understanding the information contained in 
(complete) genome sequences. The gene prediction problem 
refers to the identification of biologically functional stretches 
of sequences (genes) in genomic DNA. 

1) Glimmer algorithm 
Glimmer [24] is a well known gene prediction algorithm 

for prokaryotic genomes. The main characteristic of Glimmer 
is the use of probabilistic models for gene extraction and 
evaluation. The Glimmer method consists of three algorithmic 
stages. First, the algorithm takes as input the coding regions of 
known genes and trains three (according to the reading frame 
position) independent Interpolated Markov Models (IMMs). 
Second, using the above models it calculates a score for the 
processed sequence. Finally, it resolves candidate gene 
sequences that overlap. Profiling the original Glimmer 
distribution with Intel’s VTune tool showed that the scoring 
phase takes up to 80% of the total execution time. 

Chrysos et al. [25] presented a reconfigurable architecture 
implementing the Glimmer algorithm. The proposed 
architecture consists of three independent parallel tree-
structured Markov models that are used for the gene evaluation 
process. Each tree-structured Markov model was fully 
pipelined and each level of the tree consisted of BRAMs that 
kept the information needed for tracing down to the next tree 
level of the probabilistic model. Single floating point arithmetic 
was used, as the final result of the system was a probability 
score. This architecture was mapped on Virtex 5 FPGA device 
(XC5VSX240T) and its clock rate was at 150 MHz, achieving 
execution speedups from 1.14x up to 2.37x when it was 
compared with the official software implementation on a 
general purpose PC. 

2) GlimmerHMM algorithm 
GlimmerHMM [26] is a successor of the Glimmer 

algorithm, which is used for eukaryotic gene prediction. The 
GlimmerHMM algorithm is divided into three phases: training 
phase, identification phase and resolving overlap phase. The 
GlimmerHMM software is Unix-based and is designed for 
single-core systems;90% of its total execution time is spent in 
the scoring phase. The main differences with the Glimmer 
algorithm are that it constructs and uses 4 Markov chains, it 
uses slightly different processing and it takes longer genetic 

chains, which means longer execution times. Chrysanthou et 
al. [27] presented a parallel accelerator of the GlimmeHMM 
algorithm, implementing the four hidden Markov Models of 
the algorithm in parallel. Also, a fully pipelined structure with 
throughput one clock cycle was used for implementing each 
one of the HMMs. The proposed system used a PCI-Express 
communication interface, which was built for the data 
exchange between the implementation platform and the PC.  

The FPGA-based GlimmerHMM system was implemented 
on a Virtex-5 FPGA (XC5VLX110T). The critical resource for 
the implemented architecture is the internal BRAMs, which 
eliminated the accuracy of the final results by using 16-bit 
floating point arithmetic. The module was clocked at 126 MHz, 
whereas the clock rate for the total system was 62.5 MHz, 
which was the operation frequency of the PCI-Express. The 
bottleneck of the implemented system is the 
intercommunication of the FPGA with the CPU. The FPGA 
implementation, despite the low-rate data transmission, 
outperforms both the GPU and CPU implementations of the 
official GlimmerHMM software, offering total execution 
speedup of about 2x [27]. 

E. Phylogenetic Tree Reconstruction 
A phylogenetic tree or evolutionary tree is a tree-like 

structure that shows the inferred evolutionary relationships 
among biological species. The Phylogenetic Likelihood 
Function (PLF) is the most widely used optimality criterion to 
score and, thus, choose among distinct evolutionary scenarios 
(phylogenetic trees). The PLF is used by many program 
packages, like RAxML [28]. The PLF method is a highly 
compute- and memory-intensive a two stage process, taking as 
input a tree structure of the taxonomic units with fixed 
topology and fixed parameters. First, it tracks down a pair of 
child nodes in the given tree for which the likelihood vector at 
the common ancestor has not already been computed. Second, 
it calculates the likelihood vector entries of the common 
ancestor and it prunes out the child nodes. These steps are 
executed recursively until the likelihood vector of the root node 
has been calculated. Software analysis showed that the 
programs that use PLF spent more than 90% of their execution 
time on PFL calculation. Alachiotis et al. [29] proposed a 
dedicated FPGA-based architecture that computes the PLF. 
Their implementation exploits the fine grained instruction level 
parallelism of the PLF, despite the fact that, both ML and 
Bayesian phylogenetic inference also provide a source of 
coarse-grained parallelism. Their basic computing cell 
performed floating point additions and multiplications for each 
parent node. Double precision floating point arithmetic was 
used for consistency with the software implementation. The 
proposed architecture was mapped on a Xilinx Virtex 5 FPGA 
device (XC5VSX240T) and its clock rate was at 101 MHz. The 
critical resources for the implemented architecture were the 
BRAMs and the DSPs, which were used for the double floating 
point arithmetic. The performance of the proposed system was 
up to 8 times faster than the multi-threaded code (up to 16 
parallel threads). 
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F. FPGA-Based Implementations: Conclusions 
The previous sections described several architectures, 

which mapped well-known bioinformatics algorithms on 
standalone FPGA platforms. The described implementations 
showed that reconfigurable technology offers significant 
advantages on the execution performance of CPU intensive 
bioinformatics algorithms. More specifically, FPGA 
technology offers substantial speedups vs. conventional 
computers.  Although it was not discussed in this paper, 
reconfigurable technology also offers significantly lower 
energy requirements for the entire calculation when compared 
cluster or grid platforms Running the same algorithms. 

However, there are still several open issues before FPGA 
technology can be widely adopted by the bioinformatics 
community. These issues are not inherent problems of FPGA 
devices but of FPGA based platforms. Such issues are:  

• The proposed systems are not integrated with the 
official software distributions and in some cases they 
produce similar but not identical results. 

• Inherent FPGA capabilities, such as fast serial I/O 
interfaces, are not fully exploited yet. 

• Internal memory (BRAM) is the critical resource of 
most of the proposed architectures. External memory 
needs to be used in order to offer higher levels of 
parallelization, with the associated I/O memory 
problems appearing in general-purpose computing. 

III. STATE OF THE ART PLATFORMS 
Besides standalone systems, typically boards with a cost of 

a few hundred Euros, there exist complete multi-FPGA 
platforms which can be used as application-specific hardware 
accelerators. We present two such platforms and their usage in 
bioinformatics applications. 

A. CONVEY HC-1 
The Convey HC-1 is a hybrid-core computer platform that 

combines an FPGA-based coprocessor with a 64-bit host dual 
core Intel Xeon processor running at 2.13 GHz. The HC-1 host 
runs a 64-bit Linux kernel with a modified virtual memory 
system, which retains the memory coherence between the host 
processes and the FPGA coprocessor. 

The Convey HC-1 coprocessor consists of three main 
components: the Application Engines (AEs), the Memory 
Controllers (MCs), and the Application Engine Hub (AEH). 
The Application Engine Hub (AEH) is the interface between 
the coprocessor and the host processor. Eight memory 
controllers (MCs) are used to support the bandwidth demands 
of the coprocessor. Each memory controller is implemented on 
a different non-user controlled FPGA and it is connected to two 
standard DDR2 memory dimms.   

The Application Engines (AEs) are four user-
programmable Virtex-5 XC5VLX330 FPGAs, which 
implement the extended instructions. Each extended instruction 
consists of a “personality” that is a particular configuration of 
these FPGAs. The AEs are connected to the AEH by a 
command bus and to the memory controllers via a network of 

point-to-point links that provide very high sustained 
bandwidth. The AEs are interconnected with 668 Mbytes/s full 
duplex links. Each AE has a 2.5 GB/s link to each memory 
controller which leads to a theoretical peak bandwidth of 20 
Gbyte/s per AE when striding across the eight different 
memory controllers. 

B. Bee Cube 
BeeCube is the third generation of a commercial FPGA-

based computer system, evolved from the Berkeley Emulation 
Engine (BEE) [13] at the University of California (Berkeley). 
The platform is jointly developed by Microsoft Research, UC 
Berkeley and BEEcube Inc. The system is built to host large-
scale hardware-based computation engines and to perform 
runtime emulation of complete multicore processor 
architectures and application-specific systems. 

The BeeCube emulation platform is designed using Xilinx 
FPGAs interconnected in a ring architecture. The FPGAs are 
used to execute algorithms directly on hardware fabric for both 
speed and flexibility. Users can interact with the engine 
through an instance of the TinyOS operating system running on 
a host Microblaze processor, which is also mapped on the 
FPGA fabric along with the architecture of accelerated 
algorithm. Each platform supports high-speed interconnection 
such as Gigabit Ethernet and SATA, for communication to host 
workstations and/or other BeeCube platforms. The system can 
be configured either using a low-level HDL (Hardware 
Description Language) flow or through high-level flow using 
the MATLAB and Simulink tools. 

IV. CASE STUDIES 

A. BLAST Execution on the Convey HC-1 
The design process to map BLAST algorithm at Convey 

HC-1 platform followed the next steps: 

• Profile of the NCBI software distribution.  

• Map the most time consuming part of the software on 
FPGA device. 

• Integrate NCBI software with the special purpose 
hardware. 

• Validate results of the new SW/HW system. 

1) Profiling 
A profiling study of NCBI-BLASTn with default 

parameters using the open source GNU gprof profiler showed 
that the time spent in each step of the algorithm can vary 
substantially depending on the input datasets. Several queries 
and two of the largest NCBI’s genetic databases were used for 
our profiling tests (nucleotide collection (nt), Environmental 
samples (env_nt)). Our tests showed that the ungapped 
extension and the seeding functions are the most 
computationally intensive parts of the BLAST algorithm. As 
shown in Figure 1 these two functions consume over 50% of 
the total execution time for ungapped alignments. 
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Figure 1.  BLAST Profiling 

2) Design 
A new architecture has been designed, based in previous 

implementations. At the new architecture, data structures are 
exactly the same as the official NCBI software distribution 
making this architecture more demanding on memory 
resources.  

3) Integration 
As described above, the next step of the system 

development was the integration of the FPGA-based system 
with the software implementation. First, the official BLAST 
software distribution was downloaded and it was compiled on 
the HC-1 server. Second, the implemented IP core was mapped 
on the HC-1’s FPGA devices using the corresponding 
“connections” with the memory and the CPU. The part of code 
that was implemented by the dedicated IP core was replaced by 
a “function call” to the HC-1 coprocessor, which produced 
results identical to the replaced functions. The flowchart of the 
BLAST algorithm software-hardware co-design is presented in 
the Figure 2. 

 

Figure 2.  BLAST Execution on the Convey HC-1 

4) Validation 
Several tests with different datasets took place on the 

implemented system. The results of the final system were 
compared and they were found identical to the results of the 
NCBI-BLAST software distribution. Concluding the 
implementation of the BLAST algorithm on the new platform 
offers significant advantages: 

• This system offers identical results with the NCBI’s 
software solution.  

• High memory bandwidth offers a great solution to the 
I/O problem for input database streaming. 

• It offers high parallelism and speed characteristics and 
is scalable up to the FPGAs devices size. 

• The high-speed external memory can be used in 
addition to the on-FPGA BRAM. 

As this design is an ongoing research project and not fully 
optimized yet, it is expected to offer at least one order of 
magnitude speed up against NCBI implementation, whereas the 
fully identical results of the system vs. the NCBI software have 
been verified already. 

B. CAST Execution on the Bee CUBE 
The capabilities of the highly scalable FPGA-based CAST 

hardware architecture are indeed limited only by the amount of 
reconfigurable fabric present on the FPGA used, and the speed 
of the I/O communication channel that propagates the protein 
sequence streams from the host PC into the FPGA fabric. As 
such, using larger FPGA devices and particularly state-of-the-
art platforms can further increase performance.  

To illustrate this, multiple instances of the CAST hardware 
architecture where loaded on BeeCube Hardware Emulation 
platform [13] as a case study for using such engines in high-
performance bioinformatics applications. Each of BeeCube’s 
LX155T FPGAs can accommodate up to eight instances of 
FPGA-based CAST when adding the necessary I/O logic 
needed (FIFO buffers) to propagate the protein sequence 
streams to each CAST instance. In the experimental platform, 
eight instances of the CAST architecture were loaded on 
BeeCube’s FPGA fabric in order to observe initial results. The 
protein sequences were loaded using a Compact Flash memory, 
and transferred to the BeeCube memory structure through a 
MicroBlaze processor.  

Initial results showed a near-linear speedup (7.6 times 
faster) of the BeeCube implementation over the stand-alone 
implementation demonstrated in [15] and prove that higher 
performance is indeed achievable when the design is scalable. 
However, the ideal 8x speedup was not reached despite the fact 
that the CAST hardware architecture is highly scalable, as a 
more optimized protein sequence partitioning scheme was not 
considered in this initial study. Arbitrarily partitioning the 
sequences into streams to drive each instance fails when 
applied to the CAST algorithm, in which the amount of 
iterations for each sequence is dynamically determined at 
runtime. Given that the algorithm’s performance relies heavily 
on the way that the input sequences are fed to the system, an 
optimal resource allocation algorithm could jointly be 
developed amongst biologists and hardware design engineers 
that will enable linear speedups. This further emphasizes the 
potential for research and development in the particular field as 
such large-scale systems can indeed be used as computationally 
efficient high-end platforms for genomic data processing. 

V. CONCLUSIONS 
A broad range of bioinformatics algorithms has been shown 

to have very promising execution times on FPGA standalone 
systems. These systems operate on the standard datasets and 
testbenches of the bioinformatics community. In many cases 
the results are bit-for-bit equal to software executing the same 
algorithms, whereas in some cases the results are small 
supersets of the software runs of these algorithms. There still 
exist open challenges to overcome, such as I/O speeds, 
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standardization of user interfaces, and seamless architectures, 
to name a few, in order to develop usable and energy-efficient 
bioinformatics supercomputers for wide use by the scientific 
community. The use of emerging high-end platforms such as 
the Convey HC-1 and the BeeCube are expected to overcome 
I/O, memory, and integration with software issues and result 
into usable supercomputers for high-throughput bioinformatics. 
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