
Opportunities from the Use of FPGAs as Platforms
for Bioinformatics Algorithms

Grigorios Chrysos
Euripides Sotiriades

Christos Rousopoulos
Apostolos Dollas

Technical University of Crete

Chania, Greece

dollas@ece.tuc.gr

Agathoklis Papadopoulos
Ioannis Kirmitzoglou

Vasilis Promponas
Theocharis Theocharides

University of Cyprus

Nicosia, Cyprus

ttheocharides@ucy.ac.cy

George Petihakis
Jacques Lagnel

Panagiotis Vavylis
George Kotoulas

Hellenic Center for Marine Research

Heraklion, Greece

gpetihakis@hcmr.gr

Abstract—This paper presents an in-depth look of how FPGA
computing can offer substantial speedups in the execution of
bioinformatics algorithms, with specific results achieved to date
for a broad range of algorithms. Examples and case studies are
presented for sequence comparison (BLAST, CAST), multiple
sequence alignment (MAFFT, T-Coffee), RNA and protein
secondary structure prediction (Zuker, Predator), gene
prediction (Glimmer/GlimmerHMM) and phylogenetic tree
computation (RAxML), running on mainstream FPGA
technologies as well as high-end FPGA-based systems (Convey
HC1, BeeCube). This work also presents technological and other
obstacles that need to be overcome in order for FPGA computing
to become a mainstream technology in Bioinformatics.

Keywords— Bioinformatics algorithms, FPGA based systems,
high performance

I. INTRODUCTION
Bioinformatics applications are characterized by immense

computational loads and extremely large datasets. At the same
time, technologies such as reconfigurable computing, also
known as FPGA (Field Programmable Gate Array) computing,
are reaching a high level of maturity; also, modern FPGA
devices offer substantial hardware resources. Reconfigurable
computing, is the field in which algorithms are mapped directly
to configurable hardware resources. Despite clock speeds that
are typically 1/10th of those in general-purpose computing, by
exploiting parallelism at all levels, speedups of up to three
orders of magnitude can be achieved vs. software executing the
same algorithms, whereas even 2x speedups are considerable
due to the immense computational times of these algorithms.
The cost per computation and watts per computation are also
quite favorable for reconfigurable computing, and hence it is
worth examining this form of computing as a platform for
bioinformatics applications.

New, powerful FPGA-based platforms [14] have emerged
during the last two years, ones that combine general-purpose
computers and FPGAs. These platforms emphasize on the
high-speed data transmission between the FPGA device and the
CPU’s main memory, the availability of a conventional CPU
and the usage of the network for I/O, thus offering integrated

solutions for the execution of I/O- and memory-intensive
problems, in which the FPGAs form a tightly coupled co-
processor to the conventional one.

The contributions of this work include:

• the presentation of several bioinformatics algorithms,
which have been mapped on FPGA stand alone
platforms

• the presentation of FPGA platform technology barriers
that need to be overcome before reconfigurable
technology can offer usable, high performance
bioinformatics systems

• the presentation of two modern FPGA-based platforms
for data intensive problems, such as bioinformatics
problems, and,

• the presentation of two case studies for bioinformatics
algorithms running on modern high-end FPGA-based
platforms, which show the benefits of this approach.

Several standalone FPGA-based systems on which
bioinformatics algorithms have been mapped are presented in
Section II. Section III presents the state of the art of the new
generation of FPGA based systems; two bioinformatics
applications running on these platforms are presented at
Section IV. Lastly, Section V has conclusions regarding the
potential of this approach. It should be noted that this work
gives emphasis on results developed by the authors, as these
results form the basis for an FPGA-technology-based
supercomputer for bioinformatics. Additional research results
from other research groups exist as well, many of which are
cited (briefly, due to space limitations).

II. FPGA BASED ARCHITECTURES
This section presents various FPGA-based implementations

of bioinformatics algorithms. The main parts of the
implemented FPGA-based architectures are described and their
performance is evaluated. Moreover, this section describes the
advantages and the disadvantages of the FPGA technology for
the specific bioinformatics algorithms.

Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics
& Bioengineering (BIBE), Larnaca, Cyprus, 11-13 November 2012

978-1-4673-4358-9/12/$31.00 ©2012 IEEE 559

A. Sequence comparison
Sequence comparison algorithms compute the degree of

matching between two or more biomolecular sequences.
Biologists may use sequence comparison results either as a
proxy to infer sequence homology or as part of larger
computational pipelines. Two FPGA-based implementations
that map sequence comparison algorithms are presented,
below:

1) BLAST
BLAST (Basic Local Alignment Search Tool) [1] is the

most well-known and widely used algorithm in Bioinformatics.
BLAST is used to find similarities between genetic sequences
(queries) and sequence databases. A typical BLAST
application is to search whether a genetic sequence (query),
like a gene, is part of a complete genome (database).

The Technical University of Crete (TUC) has proposed
several different architectures and implementations of
standalone FPGA-based platforms for BLAST [2] [3] [4]. In
particular, [4] presents a software–hardware system
implementing the complete algorithm. This system produces a
superset of the official BLAST software distribution results.
The official BLAST implementation is distributed by the
National Center for Biotechnology Information (NCBI). In
addition to the TUC architectures, other research groups have
looked into the BLAST algorithm [5] [6] [7] [8].

 The most recent TUC architecture takes as inputs a query
that initializes the system and a streaming database. The
database is compared against the query in a cache controller -
like scheme, where exact matches between small fragments of
the database and the query are found. After an exact match is
found, there is tree-like structure of embedded Microblaze™
processors that resolve the final step (extension stage) of
BLAST. This system has been implemented on a Xilinx
Virtex-5 FPGA (XC5VTX240). The critical resource for the
implemented architecture is the internal to the FPGA static
memories (Block RAMs - BRAMs), due to their use for the
cache controller-like scheme and the MicroBlaze’s main
memory. BRAMs were also used to implement FIFOs for the
communication between several stages of the architecture. The
clock rate of the implementation was roughly 100 MHZ.
Actual runs showed that the proposed architecture can achieve
execution time speedups from 10x to 1000x (depending on
algorithm variation and dataset size) when compared to the
execution on a high end server. An additional issue in order to
realize the above speedup is the input transfer speed. The
FPGA device does have 64 Gbps aggregate bandwidth,
however, there is no standalone platform that supports such a
speed.

The proposed architecture proved that BLAST can run
significantly faster vs. a conventional computer but there are
certain problems that should be faced. Also, the system
produces a small superset of the NCBI results and some of the
output metrics are not calculated.

2) CAST
One of the most important factors that can affect execution

speed of BLAST and the quality of its results is the occurrence
of low complexity regions (LCRs) in protein sequences. LCRs

are very common in protein sequence databases [9-12] and
some of them are clearly preserved even between
evolutionarily distant organisms and have been associated with
important cellular functionality and diseases [e.g. 10-11].
Despite their biological significance, LCRs have been routinely
masked out of query sequences in BLAST searches to avoid
the inclusion of large number of spurious hits in the results.
Traditionally, this procedure was performed by SEG [9], an
algorithm utilizing Shannon entropy measures to detect LCRs.
While fast and accurate, SEG is also very aggressive as it was
designed to detect and mask whole regions that may often
cover a very large portion of the query sequence. On the other
hand, CAST [12] was originally designed to perform more
sophisticated masking by “surgically” removing only the
amino acid residues skewing the query sequence composition.
Therefore, in terms of the quality of the results returned by
BLAST, CAST usually outperforms SEG. The main
disadvantage of CAST is its computationally intensive nature
and the large amount of necessary I/O operations. As such, it is
an ideal algorithm that can be potentially accelerated through
the use of FPGA technologies.

An FPGA-based approach for the CAST algorithm was
proposed in [15], where the inherent parallel characteristics of
the algorithm were fully exploited in order to accelerate
execution time. The system receives streams of protein
sequences in FASTA format and iterates the computation until
all LCR regions are discovered for each of the input sequences.
Emphatically, a single instance of the proposed FPGA
architecture outperforms a multi-threaded software version of
CAST running on a high-end PC, by 100-1000x depending on
the benchmark dataset. Even the considerably faster SEG
algorithm is benchmarked slower, behind the FPGA-based
CAST, as the FPGA accelerated CAST runs more than 50x
faster in most cases. The proposed CAST architecture occupies
just 10% of an average Xilinx commercial FPGA chip, thus
allowing multiple instances to be utilized on a single FPGA
device to process multiple protein sequences in parallel.

B. Multiple Sequence Alignment
This section describes FPGA-based implementations of

multiple sequence alignment (MSA) algorithms.

1) MAFFT
The MAFFT algorithm [16] is a progressive MSA method

based on the Fast Fourier Transform (FFT). Software analysis
of the MAFFT algorithm showed that the sequence alignment
process, which is the final step of the algorithm, takes up to
80% of total algorithm execution time, making it suitable for
execution on an FPGA. Lakka et al. [17] proposed an FPGA-
based IP core that implements the final step of the MAFFT
algorithm. It takes as input the segments of the sequences with
their weights and it outputs the aligned sequences with their
alignment scores. Each MAFFT IP core consists of six-
pipelined stages. First, the input sequences are loaded to the
internal FPGA block memories (BRAMs). The internal
memories were used due to the non-streaming nature of the
algorithm and due to the lack of fast I/O on the specific FPGA.
The first four implemented stages calculate the gap penalties
and the weight matrices among the input sequences. The fifth
stage of the architecture calculates the final alignment score

560

between the aligned sequences and it outputs the homology
matrix of the input sequences where the sequences are aligned.
The final stage implements the final modification of the MSA.
The implemented IP core uses single precision floating point
arithmetic without losing any accuracy when compared to the
software implementation, and the results are identical.

The MAFFT IP core was mapped on a Xilinx Virtex 6
(XCV6SX475T) FPGA. As described above, the critical
resource for the implemented IP core is the internal FPGA
BRAMs, which are used to store the input sequences. Thus,
depending on the size of the input sequences 1 to 15 parallel
MAFFT IP cores were mapped on a single FPGA. The clock
rate of the proposed architecture is 146 MHz for the full
mapping. Many datasets were used for the validation and the
evaluation of the MAFFT IP core results and performance. The
input datasets ranged from 5 sequences with 366 nucleotide
bases long up to 100 sequences with 1403 nucleotide bases
long. The speedup that the IP core achieves ranges from 10x up
to 50x compared to the sequential execution of the algorithm
on a high end PC.

2) T-Coffee
T-Coffee [18] is a progressive constraint-based method for

MSA and it comprises of three steps. The first step constructs a
library with the pairwise alignments between all input
sequences. The second step extends the library by assigning a
weight for each pair of residues. The final step implements the
progressive MSA strategy. Profiling of the T-Coffee method
showed that the most time consuming part of the algorithm is
the calculation of the alignment score among the input
sequences. Lakka et al. [17] presented two IP cores for the
score calculation either for the pairwise alignments or for the
scores between the lists of nucleotide bases. The calculation of
the score is based on a 3-dimensional lookup table which is
pre-loaded into the internal FPGA BRAMs to the IP-core for
each new input dataset of sequences. Fixed-point arithmetic
was used for the normalization stage of the final score, without
losing accuracy vs. the software. The T-Coffee IP core was
mapped on a Xilinx Virtex 6 (XCV6SX475T) FPGA,
achieving 146 MHz clock rate. As described above, the internal
BRAMs are used for the storage of the input sequences
weights, thus it eliminates parallelism that can be achieved by
reducing the number of parallel IP cores up to maximum 22.
The performance of the implemented system depends on the
size and the nature of the input sequences. The speedup
achieved by the T-Coffee IP core compared to the sequential
software implementation varies from 1x up to almost 10x
without taking into consideration the I/O data transmission.

C. RNA and Protein Secondary Structure Prediction
Prediction of RNA and protein secondary structure is of

great importance in Medicine and Biology as it may highlight
structural and functional properties of molecules. This section
presents two FPGA-based architectures for the Zuker and the
Predator secondary structure prediction algorithms.

1) Zuker algorithm
A typical genetic sequence consists of few thousands of

bases, which leads to a huge search space for secondary
structure prediction. The Zuker method decomposes a sequence

into independent sub-sequences, achieving a huge reduction of
search space [19]. First, the coefficients for three upper
triangular matrices are calculated. Second, a back-trace
algorithm is implemented to extract the actual pairs of the RNA
input sequence. The values of the matrices are integers
representing the optimal sub-sequence’s free energy. The
official edition of the Zuker algorithm is included in the
UNafold package [20], which was used for this work. Software
analysis of the algorithm showed that more than 99% of the
algorithm’s execution time is consumed for the calculation of
the three matrices.

Smerdis et al. [21] proposes an FPGA-based IP core that
implements the first stage of the algorithm on a reconfigurable
platform. First, the input sequence (with some experimental
parameters needed for the calculations), are loaded in the
internal FPGA BRAMs. The implemented system is fully
pipelined and consists of five basic modules that are used for
the calculation of the matrices coefficients. Also, the
implemented system offers high throughput due to its
accessibility of the proper data for the coefficient calculations.
The main drawback when mapping the Zuker algorithm on
reconfigurable technology is the high memory usage. The
implemented method uses portions of internal memory to store
the input sequence. It is important that for double sized genetic
sequence the memory size increases by about four times.
Smerdis et al. [21] propose the use of external memory (DDR)
to circumvent the above limitation. The Zuker system
architecture was fully designed on a Virtex 5 Xilinx
(XS5VSX240T) device. The clock rate of the design is 100
MHz with the FPGA utilization almost at 100%. The critical
resource for the implemented system is the internal BRAMs,
which eliminates the parallelization of the implemented system
up to 58 parallel computation cores. The test datasets varied
from 100 genetic bases up to 800 genetic bases. The
implemented system offered execution speedup from 3x up to
10x compared to the sequential software execution on a high-
end PC. In addition to this work, performed at TUC, there exist
other results of FPGA implementations of the Zuker algorithm
[22].

2) Predator algorithm
The Predator method [23] predicts the secondary structure

of a protein sequence. The algorithm consists of four basic
steps. The first part calculates the secondary structure
propensities, based on amino acid tendency to form parallel b-
bridges, antiparallel b-bridges, hydrogen bonds and turns. The
second part of the algorithm searches a protein database with
560 proteins of known structure for homologs to the input
sequence. The third part of the method takes as input the
protein sequence and scores its non-homologous parts. The last
stage of the method takes as input the output of the first three
parts and applies some simple rules in order to find the final
prediction. The Predator algorithm is a computationally
demanding method in cases of very long input sequences.
Software analysis of the Predator algorithm showed that 90%
of the total execution time is spent on the search of homologs
in the protein database and the scoring of non-homologous
protein parts.

Smerdis et al. [21] presented the parallel implementation of
the Predator algorithm on an FPGA. The implemented system

561

consists of six independent parallel computing modules. Each
one calculates one of the six possible formations which are
needed for the first and the second part of the algorithm. Also,
there is a module that gathers all the results from the previous
modules and outputs the final results. The input sequence and
the 560 proteins of known structure are stored in internal
FPGA BRAMs. This architecture of the Predator system was
mapped on a Xilinx Virtex 5 FPGA device (XC5VSX240T).
The system was evaluated with several input sequences and the
secondary structures predicted were verified against the
original software implementation. The clock rate that the
system achieved is 298 MHz. The performance speedup that
the implemented system achieved when compared to the
sequential software execution varies from 30x up to 50x.

D. Gene Prediction
Gene identification is one of the most important steps in the

process of understanding the information contained in
(complete) genome sequences. The gene prediction problem
refers to the identification of biologically functional stretches
of sequences (genes) in genomic DNA.

1) Glimmer algorithm
Glimmer [24] is a well known gene prediction algorithm

for prokaryotic genomes. The main characteristic of Glimmer
is the use of probabilistic models for gene extraction and
evaluation. The Glimmer method consists of three algorithmic
stages. First, the algorithm takes as input the coding regions of
known genes and trains three (according to the reading frame
position) independent Interpolated Markov Models (IMMs).
Second, using the above models it calculates a score for the
processed sequence. Finally, it resolves candidate gene
sequences that overlap. Profiling the original Glimmer
distribution with Intel’s VTune tool showed that the scoring
phase takes up to 80% of the total execution time.

Chrysos et al. [25] presented a reconfigurable architecture
implementing the Glimmer algorithm. The proposed
architecture consists of three independent parallel tree-
structured Markov models that are used for the gene evaluation
process. Each tree-structured Markov model was fully
pipelined and each level of the tree consisted of BRAMs that
kept the information needed for tracing down to the next tree
level of the probabilistic model. Single floating point arithmetic
was used, as the final result of the system was a probability
score. This architecture was mapped on Virtex 5 FPGA device
(XC5VSX240T) and its clock rate was at 150 MHz, achieving
execution speedups from 1.14x up to 2.37x when it was
compared with the official software implementation on a
general purpose PC.

2) GlimmerHMM algorithm
GlimmerHMM [26] is a successor of the Glimmer

algorithm, which is used for eukaryotic gene prediction. The
GlimmerHMM algorithm is divided into three phases: training
phase, identification phase and resolving overlap phase. The
GlimmerHMM software is Unix-based and is designed for
single-core systems;90% of its total execution time is spent in
the scoring phase. The main differences with the Glimmer
algorithm are that it constructs and uses 4 Markov chains, it
uses slightly different processing and it takes longer genetic

chains, which means longer execution times. Chrysanthou et
al. [27] presented a parallel accelerator of the GlimmeHMM
algorithm, implementing the four hidden Markov Models of
the algorithm in parallel. Also, a fully pipelined structure with
throughput one clock cycle was used for implementing each
one of the HMMs. The proposed system used a PCI-Express
communication interface, which was built for the data
exchange between the implementation platform and the PC.

The FPGA-based GlimmerHMM system was implemented
on a Virtex-5 FPGA (XC5VLX110T). The critical resource for
the implemented architecture is the internal BRAMs, which
eliminated the accuracy of the final results by using 16-bit
floating point arithmetic. The module was clocked at 126 MHz,
whereas the clock rate for the total system was 62.5 MHz,
which was the operation frequency of the PCI-Express. The
bottleneck of the implemented system is the
intercommunication of the FPGA with the CPU. The FPGA
implementation, despite the low-rate data transmission,
outperforms both the GPU and CPU implementations of the
official GlimmerHMM software, offering total execution
speedup of about 2x [27].

E. Phylogenetic Tree Reconstruction
A phylogenetic tree or evolutionary tree is a tree-like

structure that shows the inferred evolutionary relationships
among biological species. The Phylogenetic Likelihood
Function (PLF) is the most widely used optimality criterion to
score and, thus, choose among distinct evolutionary scenarios
(phylogenetic trees). The PLF is used by many program
packages, like RAxML [28]. The PLF method is a highly
compute- and memory-intensive a two stage process, taking as
input a tree structure of the taxonomic units with fixed
topology and fixed parameters. First, it tracks down a pair of
child nodes in the given tree for which the likelihood vector at
the common ancestor has not already been computed. Second,
it calculates the likelihood vector entries of the common
ancestor and it prunes out the child nodes. These steps are
executed recursively until the likelihood vector of the root node
has been calculated. Software analysis showed that the
programs that use PLF spent more than 90% of their execution
time on PFL calculation. Alachiotis et al. [29] proposed a
dedicated FPGA-based architecture that computes the PLF.
Their implementation exploits the fine grained instruction level
parallelism of the PLF, despite the fact that, both ML and
Bayesian phylogenetic inference also provide a source of
coarse-grained parallelism. Their basic computing cell
performed floating point additions and multiplications for each
parent node. Double precision floating point arithmetic was
used for consistency with the software implementation. The
proposed architecture was mapped on a Xilinx Virtex 5 FPGA
device (XC5VSX240T) and its clock rate was at 101 MHz. The
critical resources for the implemented architecture were the
BRAMs and the DSPs, which were used for the double floating
point arithmetic. The performance of the proposed system was
up to 8 times faster than the multi-threaded code (up to 16
parallel threads).

562

F. FPGA-Based Implementations: Conclusions
The previous sections described several architectures,

which mapped well-known bioinformatics algorithms on
standalone FPGA platforms. The described implementations
showed that reconfigurable technology offers significant
advantages on the execution performance of CPU intensive
bioinformatics algorithms. More specifically, FPGA
technology offers substantial speedups vs. conventional
computers. Although it was not discussed in this paper,
reconfigurable technology also offers significantly lower
energy requirements for the entire calculation when compared
cluster or grid platforms Running the same algorithms.

However, there are still several open issues before FPGA
technology can be widely adopted by the bioinformatics
community. These issues are not inherent problems of FPGA
devices but of FPGA based platforms. Such issues are:

• The proposed systems are not integrated with the
official software distributions and in some cases they
produce similar but not identical results.

• Inherent FPGA capabilities, such as fast serial I/O
interfaces, are not fully exploited yet.

• Internal memory (BRAM) is the critical resource of
most of the proposed architectures. External memory
needs to be used in order to offer higher levels of
parallelization, with the associated I/O memory
problems appearing in general-purpose computing.

III. STATE OF THE ART PLATFORMS
Besides standalone systems, typically boards with a cost of

a few hundred Euros, there exist complete multi-FPGA
platforms which can be used as application-specific hardware
accelerators. We present two such platforms and their usage in
bioinformatics applications.

A. CONVEY HC-1
The Convey HC-1 is a hybrid-core computer platform that

combines an FPGA-based coprocessor with a 64-bit host dual
core Intel Xeon processor running at 2.13 GHz. The HC-1 host
runs a 64-bit Linux kernel with a modified virtual memory
system, which retains the memory coherence between the host
processes and the FPGA coprocessor.

The Convey HC-1 coprocessor consists of three main
components: the Application Engines (AEs), the Memory
Controllers (MCs), and the Application Engine Hub (AEH).
The Application Engine Hub (AEH) is the interface between
the coprocessor and the host processor. Eight memory
controllers (MCs) are used to support the bandwidth demands
of the coprocessor. Each memory controller is implemented on
a different non-user controlled FPGA and it is connected to two
standard DDR2 memory dimms.

The Application Engines (AEs) are four user-
programmable Virtex-5 XC5VLX330 FPGAs, which
implement the extended instructions. Each extended instruction
consists of a “personality” that is a particular configuration of
these FPGAs. The AEs are connected to the AEH by a
command bus and to the memory controllers via a network of

point-to-point links that provide very high sustained
bandwidth. The AEs are interconnected with 668 Mbytes/s full
duplex links. Each AE has a 2.5 GB/s link to each memory
controller which leads to a theoretical peak bandwidth of 20
Gbyte/s per AE when striding across the eight different
memory controllers.

B. Bee Cube
BeeCube is the third generation of a commercial FPGA-

based computer system, evolved from the Berkeley Emulation
Engine (BEE) [13] at the University of California (Berkeley).
The platform is jointly developed by Microsoft Research, UC
Berkeley and BEEcube Inc. The system is built to host large-
scale hardware-based computation engines and to perform
runtime emulation of complete multicore processor
architectures and application-specific systems.

The BeeCube emulation platform is designed using Xilinx
FPGAs interconnected in a ring architecture. The FPGAs are
used to execute algorithms directly on hardware fabric for both
speed and flexibility. Users can interact with the engine
through an instance of the TinyOS operating system running on
a host Microblaze processor, which is also mapped on the
FPGA fabric along with the architecture of accelerated
algorithm. Each platform supports high-speed interconnection
such as Gigabit Ethernet and SATA, for communication to host
workstations and/or other BeeCube platforms. The system can
be configured either using a low-level HDL (Hardware
Description Language) flow or through high-level flow using
the MATLAB and Simulink tools.

IV. CASE STUDIES

A. BLAST Execution on the Convey HC-1
The design process to map BLAST algorithm at Convey

HC-1 platform followed the next steps:

• Profile of the NCBI software distribution.

• Map the most time consuming part of the software on
FPGA device.

• Integrate NCBI software with the special purpose
hardware.

• Validate results of the new SW/HW system.

1) Profiling
A profiling study of NCBI-BLASTn with default

parameters using the open source GNU gprof profiler showed
that the time spent in each step of the algorithm can vary
substantially depending on the input datasets. Several queries
and two of the largest NCBI’s genetic databases were used for
our profiling tests (nucleotide collection (nt), Environmental
samples (env_nt)). Our tests showed that the ungapped
extension and the seeding functions are the most
computationally intensive parts of the BLAST algorithm. As
shown in Figure 1 these two functions consume over 50% of
the total execution time for ungapped alignments.

563

Figure 1. BLAST Profiling

2) Design
A new architecture has been designed, based in previous

implementations. At the new architecture, data structures are
exactly the same as the official NCBI software distribution
making this architecture more demanding on memory
resources.

3) Integration
As described above, the next step of the system

development was the integration of the FPGA-based system
with the software implementation. First, the official BLAST
software distribution was downloaded and it was compiled on
the HC-1 server. Second, the implemented IP core was mapped
on the HC-1’s FPGA devices using the corresponding
“connections” with the memory and the CPU. The part of code
that was implemented by the dedicated IP core was replaced by
a “function call” to the HC-1 coprocessor, which produced
results identical to the replaced functions. The flowchart of the
BLAST algorithm software-hardware co-design is presented in
the Figure 2.

Figure 2. BLAST Execution on the Convey HC-1

4) Validation
Several tests with different datasets took place on the

implemented system. The results of the final system were
compared and they were found identical to the results of the
NCBI-BLAST software distribution. Concluding the
implementation of the BLAST algorithm on the new platform
offers significant advantages:

• This system offers identical results with the NCBI’s
software solution.

• High memory bandwidth offers a great solution to the
I/O problem for input database streaming.

• It offers high parallelism and speed characteristics and
is scalable up to the FPGAs devices size.

• The high-speed external memory can be used in
addition to the on-FPGA BRAM.

As this design is an ongoing research project and not fully
optimized yet, it is expected to offer at least one order of
magnitude speed up against NCBI implementation, whereas the
fully identical results of the system vs. the NCBI software have
been verified already.

B. CAST Execution on the Bee CUBE
The capabilities of the highly scalable FPGA-based CAST

hardware architecture are indeed limited only by the amount of
reconfigurable fabric present on the FPGA used, and the speed
of the I/O communication channel that propagates the protein
sequence streams from the host PC into the FPGA fabric. As
such, using larger FPGA devices and particularly state-of-the-
art platforms can further increase performance.

To illustrate this, multiple instances of the CAST hardware
architecture where loaded on BeeCube Hardware Emulation
platform [13] as a case study for using such engines in high-
performance bioinformatics applications. Each of BeeCube’s
LX155T FPGAs can accommodate up to eight instances of
FPGA-based CAST when adding the necessary I/O logic
needed (FIFO buffers) to propagate the protein sequence
streams to each CAST instance. In the experimental platform,
eight instances of the CAST architecture were loaded on
BeeCube’s FPGA fabric in order to observe initial results. The
protein sequences were loaded using a Compact Flash memory,
and transferred to the BeeCube memory structure through a
MicroBlaze processor.

Initial results showed a near-linear speedup (7.6 times
faster) of the BeeCube implementation over the stand-alone
implementation demonstrated in [15] and prove that higher
performance is indeed achievable when the design is scalable.
However, the ideal 8x speedup was not reached despite the fact
that the CAST hardware architecture is highly scalable, as a
more optimized protein sequence partitioning scheme was not
considered in this initial study. Arbitrarily partitioning the
sequences into streams to drive each instance fails when
applied to the CAST algorithm, in which the amount of
iterations for each sequence is dynamically determined at
runtime. Given that the algorithm’s performance relies heavily
on the way that the input sequences are fed to the system, an
optimal resource allocation algorithm could jointly be
developed amongst biologists and hardware design engineers
that will enable linear speedups. This further emphasizes the
potential for research and development in the particular field as
such large-scale systems can indeed be used as computationally
efficient high-end platforms for genomic data processing.

V. CONCLUSIONS
A broad range of bioinformatics algorithms has been shown

to have very promising execution times on FPGA standalone
systems. These systems operate on the standard datasets and
testbenches of the bioinformatics community. In many cases
the results are bit-for-bit equal to software executing the same
algorithms, whereas in some cases the results are small
supersets of the software runs of these algorithms. There still
exist open challenges to overcome, such as I/O speeds,

564

standardization of user interfaces, and seamless architectures,
to name a few, in order to develop usable and energy-efficient
bioinformatics supercomputers for wide use by the scientific
community. The use of emerging high-end platforms such as
the Convey HC-1 and the BeeCube are expected to overcome
I/O, memory, and integration with software issues and result
into usable supercomputers for high-throughput bioinformatics.

ACKNOWLEDGMENT
This work is co-financed by the European Union (ERDF)

and national resources of Greece and Cyprus.

REFERENCES
[1] S. Altschul, W. Gish, W. Miller, and E. Myers, “Basic Local Alignment

Search Tool” J. Mol. Biol., vol. 215, pp 403-410, 1990.
[2] E. Sotiriades, C. Kozanitis, A. Dollas, “FPGA based Architecture of

DNA Sequence Comparison and Database Search”, Proceedings 20th
International Parallel and Distributed Processing Symposium, IPDPS
2006, p 193, ,at the 13th Reconfigurable Architectures Workshop
Rhodes, Greece, 25-29 April, 2006

[3] E. Sotiriades, C. Kozanitis, A. Dollas, “Some Initial Results on
Hardware BLAST Acceleration with a Reconfigurable Architecture”,
Proceedings 20th International Parallel and Distributed Processing
Symposium, IPDPS 2006, p 251 , at the 5th IEEE International
Workshop on High Performance Computational Biology
(HiCOMB2006), Rhodes, Greece, 25-29 April, 2006.

[4] E. Sotiriades, A. Dollas “A General Reconfigurable Architecture for the
BLAST algorithm”, The Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology, Special Issue on Computing
Architectures and Acceleration for Bioinformatics Algorithms, Kluwer
Academic Publishers Volume 48, Issue 3 Pages: 189 –
208, September, 2007.

[5] T. Oliver, B. Schmidt, D. Maskel “"Reconfigurable Architectures for
Bio-sequence Database Scanning on FPGAs", IEEE Transactions on
Circuits and Systems II, Vol, 52, No, 12, pp, 851-855, 2005.

[6] K. Muriki, K. Underwood, and R. Sass, “RC-BLAST: Towards an open
source hardware implementation,” In Proceedings of the International
Workshop on High Performance Computational Biology (2005).

[7] M. Herbordt, J. Model, Y. Gu, B. Sukhwani, T. VanCourt, "Single Pass,
BLAST-Like, Approximate String Matching on FPGAs"14th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM'06), pp, 217-226, 2006.

[8] M. Herbordt, J. Model, B. Sukhwani, Y. Gu, and T. VanCourt, “Single
pass streaming BLAST on FPGAs”, Parallel Computing, vol. 33, issue
10-11, pp 741-756, 2007.

[9] J.C. Wootton, S. Federhen: Statistics of local complexity in amino acid
sequences and sequence databases. Computers & Chemistry 1993,
17(2):149-163.

[10] G. Gill, E. Pascal, Z.H. Tseng, R. Tjian: A glutamine-rich hydrophobic
patch in transcription factor Sp1 contacts the dTAFII110 component of
the Drosophila TFIID complex and mediates transcriptional activation.
Proceedings of the National Academy of Sciences, USA 1994, 91(1):192-
196.

[11] S. Karlin, L. Brocchieri, A. Bergman, J. Mrazek, A.J. Gentles: Amino
acid runs in eukaryotic proteomes and disease associations. Proceedings
of the National Academy of Sciences, USA 2002, 99(1):333-338.

[12] V.J Promponas, A.J. Enright, S. Tsoka, D.P. Kreil, C. Leroy, S.
Hamodrakas, C. Sander, C.A. Ouzounis: CAST: an iterative algorithm

for the complexity analysis of sequence tracts. Bioinformatics 2000,
16(10):915-922.

[13] “BeeCube Hardware Emulation Platform.” [Online]. Available:
http://beecube.com. [Accessed: 20-Jun-2012].

[14] “Xilinx Products Guide” [Online]. Available: http://www.xilinx.com.
[Accessed: 20-Jun-2012].

[15] A. Papadopoulos, V.J. Promponas, T. Theocharides, "Towards systolic
hardware acceleration for local complexity analysis of massive genomic
data", ACM Great Lakes Symposium on VLSI - GLSVLSI 2012, Salt
Lake City, May 2012.

[16] K. Katoh, K. Kuma, H. Toh, T. Miyata, MAFFT version 5: improvement
in accuracy of multiple sequence alignment. Nucleic Acids Research, vol
33, pp. 511-518,, 2005.

[17] M. Lakka, A. Desarti, G. Chrysos, E. Sotiriades, I. Papaefstathiou, A.
Dollas, “Reconfigurable Computing IP Cores for Multiple Sequence
Alignment”, In Proceedings of BIOINFORMATICS, pp. 216-221, 2011.

[18] C. Notredame, D.G. Higgins, J., Heringa, T–Coffee: A novel method for
fast and accurate multiple sequence alignment. Journal of Molecular
Biology, vol. 302, issue 1, pp. 205-217 2000.

[19] M. Zuker, P. Stiegler, “Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information”, Nucleic
Acids Research, vol. 9, pp. 133-148, 1981.

[20] N. R. Markham, M. Zuker, “Unafold:Software for nucleic acid folding
and hybridization”, Methods in Molecular Biology, vol 453, pp 3–31,
2008

[21] M. Smerdis, P. Dagritzikos, G. Chrysos, E. Sotirades, A. Dollas,
“Reconfigurable Systems for the Zuker and the Predator Algorithms for
Secondary Structure Prediction of Genetic Data”, In the proccedings of
Field Programmable Logic (FPL), 2010.

[22] A. Jacob, J. Buhler, R. Chamberlain, "Rapid RNA Folding: Analysis and
Acceleration of the Zuker Recurrence," Field-Programmable Custom
Computing Machines, Annual IEEE Symposium on, pp. 87-94, 2010
18th IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines, 2010

[23] D. Frishman and P. Argos, “Incorporation of long-distance interactions
into a secondary structure prediction algorithm”, Protein Engineering,
vol 9, pp.133-142, 1996.

[24] S. Salzberg, A. Delcher, S. Kasif, and O. White. Microbial gene
identification using interpolated Markov models, Nucleic Acids
Research 26:2 (1998), 544-548.

[25] G. Chrysos, E. Sotiriades, I. Papaefstathiou, and A. Dollas, “A FPGA
based coprocessor for gene finding using Interpolated Markov Model
(IMM),” in Proceedings of the 19th International Conference on Field
Programmable Logic and Applications (FPL ’09), pp. 683–686, August
2009.

[26] W.H. Majoros, M. Pertea, and S.L. Salzberg, TigrScan and
GlimmerHMM: two open-source ab initio eukaryotic gene-finders
Bioinformatics, Vol. 20, pp. 2878-2879,2004.

[27] N. Chrysanthou, G. Chrysos, E. Sotiriades, I. Papaefstathiou, Parallel
accelerators for GlimmerHMM bioinformatics algorithm, In the
Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp.1-6, 2011.

[28] A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics, 22(21):2688–2690, 2006.

[29] N. Alachiotis, A. Stamatakis, E. Sotiriades, and A. Dollas, “A
reconfigurable architecture for the phylogenetic likelihood function,” in
Proceedings of the 19th International Conference on Field
Programmable Logic and Applications (FPL ’09), pp. 674–678, 2009.

565

