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Abstract—In this paper we propose a new iterative graph based
clustering technique. The proposed method has three desirable
characteristics as compared to well known clustering techniques.
Specifically, because of its iterative nature, the number of clusters
contained in a given data set it is not necessary to be known a pri-
ori as partitional clustering techniques demand. Its performance,
in terms of the quality of the achieved clustering, does not depend
on the distribution of the cluster’s size. Finally, no threshold value
is required for achieving the clustering as hierarchical clustering
techniques demand. All these features manifest themselves in the
important problem of clustering homologous proteins when only
sequence information is available. The proposed method is tested
against well known and widely used techniques, by conducting a
number of experiments based on both artificial and real protein
data sets and all above mentioned characteristics were confirmed.

I. INTRODUCTION

An important problem in today’s genomics is that of
grouping together homologous proteins when only sequence
information is available. This is a difficult problem since
sequence similarity is a very noisy measure of evolutionary
relatedness [1]. The core of most methods proposed so far in
the bioinformatics literature, is based on well known clustering
techniques also used in other fields of sciences.

The importance of data clustering, the great number and
diversity of applications, along with the specific requirements
each of them poses, combined with the lack of a universally
accepted definition of the term cluster, has led to a plethora
of clustering methods over the past decades. In recent years
especially, the computer revolution has provided scientists with
very large amounts of data and the computation resources to
process and analyse them, leading to the development of mod-
ern clustering techniques. The existence of this great number
of clustering methods, gives an indication to what nowadays is
generally accepted, that there exists no globally better method.
Instead, each method has its strengths and weaknesses and its
best suited to a specific class of applications [2].

Although as mentioned above, the definition of a cluster is
somewhat broad and takes usually the shape of the specific
requirements of the application at hand, the general intuition
behind it is that clusters are groups of objects presenting
similar characteristics among them, and dissimilar to the rest
of the data set. If a data set comprises of well-defined and
well-separated groups, then the cluster identification problem
becomes a fairly trivial one and the vast majority of the
proposed solutions would yield very similar results. In real
applications however, this is seldom the case, as real data
sets are usually characterized by inhomogeneity in their inter-
object relations, having strongly related groups co-existing or
possibly overlapping with more loosely connected groups, as
well as “irrelevant” objects. What makes the problem even

more difficult is that, in the majority of real applications,
this knowledge is not present a priori and safe assumptions
can not be made. In these cases, the particular choice of the
clustering method used is of crucial importance, and different
methods applied to the same data set could yield highly
different results. Hence, it becomes clear that the selected
method should comply with the clustering requirements of the
application it is intended to, i.e. the interpretation given by the
method to the clustering objective, as well as the goals it sets
in order to achieve it, should match the needs of the application
at hand.

On the basis of the aforementioned interpretation of the
problem, as well as the a priori knowledge required from them,
the main bulk of the existing clustering methods can be loosely
classified into two broad categories; namely the partitional and
the hierarchical ones.

In partitional clustering methods, the data set at hand is
partitioned into a predefined number of clusters, by seeking
the partition that optimizes a clustering quality measure (e.g
modularity [3]). The most popular representative of this class
of methods is k-means [4], where the data are represented as
points in Euclidean space and the goal of the method is to
find the partition that minimizes the sum of distances of each
object from the center mass of the cluster it is assigned to.
In the same category belongs the family of spectral clustering
methods, which represent the given objects and the relations
between them in the form of a similarity graph, and seek to
partition the graph nodes into k disjoint groups, by introducing
suitable clustering objectives based on the spectral charac-
teristics of the graph, such as ratio cut (RCut), normalized
cut (NCut), and ratio association (RAssoc) [5], [6], [7]. It
has been recently shown, that the above mentioned spectral
clustering techniques are equivalent to the kernel k-means one
[8]. In both of the above families of methods, optimization
leads to NP-hard problems and solution is obtained through
relaxation of the criteria, or heuristic algorithms. The main
disadvantage of partitional clustering methods though, is that
the number of clusters, k, required beforehand, is in most
real cases unknown and difficult to assume, since in most
applications, the only knowledge one is provided with, is
the data set itself. Moreover, there is a resolution limit when
clustering is based on global (i.e. affected by the whole data
set) optimization criteria, meaning that small sized clusters are
often not identified [2] [9].

The family of the hierarchical methods on the other hand,
can be considered as the backbone of the clustering methods
that are used today in various applications, with the class
of the agglomerative methods being the most popular one
[10]. Instead of producing a single partition of data into
clusters, the output of this class of methods is a whole
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hierarchy of partitions, each one resulting by merging a pair
of suitably selected clusters of the previous partition. Each
level of the hierarchy is assigned a constant, equalling the
similarity of the clusters being merged at that particular point.
The outcome, called hierarchical clustering scheme, is usually
represented graphically by a dendrogram that concentrates
all the information of the various clustering stages, from the
lowest (leaf) level, where every object belongs to a different
cluster, up to the highest (root) level, where all the objects
belong to the same cluster [11]. What differentiates the various
representatives of this family of methods, is the way each
one defines inter-cluster similarity. More specifically, single
linkage clustering defines similarity between clusters A, B,
as the similarity of the “closest” or most similar pair of
objects (x, y), with x ∈ A and y ∈ B. At the other end
of the spectrum, complete linkage clustering defines similarity
between A, B, by the “farthest” or most dissimilar pair (x, y),
with x ∈ A and y ∈ B. Finally, average linkage clustering is a
compromise between these two extremes, defining inter-cluster
similarity as the mean of the pairwise similarities of all (x, y),
with x ∈ A and y ∈ B. Although hierarchical clustering has
the advantage that it does not require a priori knowledge on
the number and size of the clusters, it presents itself with a
number of significant disadvantages as well. The first and most
obvious one is that the hierarchical structure produced by this
family of methods could be a rather artificial representation
of the data set at hand, if the latter does not possess this kind
of structure in the first place, which is the case in most real
applications. Moreover, there is no clear way to determine,
of all the partitions it produces, the one that best represents
the structure of the data set at hand. This is usually done by
truncating the hierarchy to a selected level, using a threshold
value, which in most cases is chosen empirically. Furthermore,
regardless of the particular hierarchy level, there are some
inherent issues, attributed to the merging criteria used, that
often lead to well known and documented misclassification
problems (such as the “chaining” effect for single linkage and
“scattering” for complete linkage clustering) [10].

Finally, though a great number of techniques have been
proposed regarding the particular problem of sequence-based
protein clustering, (e.g TransClust [12] or HiFix [13]), the
most prominent and one of the most used clustering algorithms
in bioinformatics is the Markov Clustering Algorithm [14].
MCL simulates a flow on the given graph by calculating suc-
cessive powers of the associated adjacency matrix, a procedure
which is known as expansion and is responsible for allowing
flow to connect different regions of the graph. In addition, at
each iteration, an inflation step is applied, in order to enhance
the existing contrast between regions of strong and weak
flow in the graph. Assuming non-overlapping clusters with
moderate diameters, the process converges towards a partition
of the graph, with the set of high-flow regions (the clusters)
separated by boundaries with no flow. Since the granularity of
the resulting clustering is controlled by the inflation parameter,
its value strongly affects the number and overall quality of the
identified clusters [2] [14].

The paper is organised as follows. In Section II some graph
theoretic preliminaries are presented. In Section III the pro-
posed technique is analysed in detail. Section IV contains our

experimental setup, the clustering results and the comparisons
of the proposed technique with other well known methods.
Finally, Section V contains our conclusions.

II. PRELIMINARIES

Let us consider that the given data set is represented in terms
of a similarity graph G = (V, E , W ), where V , E and W are
the nodes, the edges sets and the weight matrix, respectively.
In this clustering model, each node in V represents an object
of the data set, and the edge weight between any two nodes
represents the similarity of the corresponding objects. More
specifically, the W (i, j) element of the |V| × |V| matrix W
contains the edge weight existing between nodes i and j and
|X | denotes the cardinality of set X . Let us now define the
following quantity:

R(i,A) = 1

|A|
∑
j∈A

W (i, j), (1)

which quantifies the relevance of the i−th node, i ∈ V , to a
subset A ⊆ V . Using this quantity we can define the following
quality measures for a cluster candidate subset of objects Vc ⊆
V:

Q(Vc) = min
i∈Vc

R(i,Vc) (2)

S(Vc) = max
i∈V\Vc

R(i,Vc) (3)

where A\B denotes the relative complement of set B in set A
or equivalently the set-theoretic difference of B and A.

Note that a high value of Q(Vc) ensures that every node
of Vc is highly relevant to the other nodes of Vc, and hence
there is a high probability that the objects represented by Vc
are part of the same class. On the other hand, if Vc contains
even as much as one node with low relevance to the other
members (a node that normally should be characterized as an
outlier), then its presence will be reflected on the value of the
measure.

Similarly, a low value of S(Vc) ensures that there exists no
node outside Vc with high relevance to it, meaning that the
subgraph Gc induced by Vc can be considered well-separated
from the rest of the graph.

As it will become apparent in the next section, the above
defined measures enable us to express the overall quality of
a cluster in “worst case” terms, i.e. as a function of the
most dissimilar included node and the most similar of the not
included ones.

III. THE PROPOSED METHOD

Let us now proceed to present the proposed method which,
as we have already mentioned, is iterative with each iteration
being a two-step procedure. Namely, the first step is an
elimination, or deconstruction-step while the second is an
augmentation-step.
A. Elimination-Step

Let us form the following sequence of node sets with a
monotone decreasing cardinality:

Ve(k) = Ve(k − 1)\imin(k), Ve(0) = V (4)

where
imin(k) = argmin

i∈Ve(k−1)
R(i,Ve(k − 1)). (5)
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As it is clear from Equ. (5), the above sequence is obtained by
repeatedly eliminating the node with the lowest relevance, of
the ones currently present in set Ve(k − 1) (i.e. the node that
determines the relevance measure Q(Ve(k − 1))). Since the
elimination of a node (as well as the edges incident to it) can
only reduce the degrees of the nodes that were adjacent to it,
it is clear that if the node eliminated on a given round is part
of a dense and well separated group of nodes then, with high
probability the majority of the reduced degrees will belong to
nodes of the same group, which, due to the aforementioned
assumption, had similar degrees with the eliminated node. As
a result, the node that will be eliminated on the next round
will most likely also belong to the same group, and this will
carry on until the whole group is eliminated. Based on this, we
expect the outcome of this step to be a rough grouping of the
nodes, with the smallest groups located towards the beginning
of the elimination sequence and the largest ones located
towards the end of it. As we go deeper in the elimination
rounds, the nodes that are still remaining towards the end
of the procedure, should not only have higher degrees in the
initial graph than the ones already eliminated, but they should
also present high similarities among them, as it is precisely
the large weights of the edges between them that allowed
them to survive the elimination rounds. In this sense, the
lastly eliminated nodes should not only belong to the same
cluster, but they should also form the most compact (heavily
connected) part of it, or its core (and the objects they represent
form the core of the corresponding cluster). Based on this
reasoning, the algorithm decides that has reached the core of
a cluster, whenever quality measure Q(Ve(k)) of the remaining
subgraph exceeds a predetermined threshold 0 ≤ α ≤ 1. We
must stress at this point that the selection of α is not crucial
to the outcome of the method, as long as it reflects a certainty
of similarity, (e.g. it take values close to 1), thus ensuring that
the identified subset VC is indeed a cluster core.
B. Augmentation-Step

What is needed now, is a systematic way of adding (pre-
viously eliminated) nodes to the identified subset of nodes,
based on some selection criterion, with the goal of “forming”
the rest of the cluster around its identified core VC . To this
end let us define a sequence of node subsets of monotone
increasing cardinality:

Va(k) = Va(k − 1) ∪ imax(k), Va(0) = VC (6)

where

imax(k) = argmax
i∈V\Va(k−1)

R(i,Va(k − 1)). (7)

In other word, in each augmentation round, of all the candidate
nodes that are not yet added, the one with the highest relevance
to subset Va(k−1), i.e. the node that determines the separation
measure S(Va(k − 1)), is selected for addition. Due to the
starting point of the augmentation procedure, as well as the
selection criterion of the node which is added in each round,
we anticipate that the first nodes to be added in the core will
be the remaining nodes of the cluster that will frame the initial
core, followed by the rest of the nodes of the graph, which are
irrelevant to the cluster at hand. Thus, what is needed to define
in order to conclude our method, is a suitable decision rule

that will help us to determine whether the subgraph which
is formed during the augmentation procedure represents the
complete class at hand (all the objects of the class have been
included), in which case the augmentation procedure should be
stopped, or not. More specifically our goal is the determination
of the particular augmentation round, after which, the formed
subgraph can no longer be considered as one cluster, i.e. not
all the objects it represents belong to the same class. In order
to detect this change, we propose the use of the following
objective function:

C(k) =
1

k

k−1∑
j=0

Q(Va(j))−Q(Va(k)). (8)

Since, as it is evident from (8), the first term of the proposed
scheme constitutes the running average of the measure’s
sequence {Q(Va(j)), j = 0, 1, · · · , k − 1}, if the clusters
comprising the given data set are well separated, then adding
an “irrelevant” node to an already formed cluster (during the
previous rounds), will introduce a steep drop in the Q(Va(k))
values, under the assumption that the newly added node will
have much lower relevance to the nodes of the already formed
subgraph. Hence, the new Q(Va(k)) value will be much lower
compared to the previous ones.

Consequently, the detection of this particular round in the
case of well-separated clusters is a fairly easy task. In real data
set however, as this is not always the case, the sequence of
C(k) could attain many close−valued local maxima, leading
to misclassification errors. Therefore, we propose the use
of a more robust characteristic function, which constitutes a
weighted version of C(k) defined in (8), as follows:

CW (k) = Q(Va(k))C(k). (9)

Having defined a characteristic function with the desired
characteristic, we can obtain the solution of the clustering
problem, i.e., the identification of the cluster at hand, Va(k∗),
by solving the following maximization problem

k∗ = argmax
k

CW (k). (10)

After a cluster has been identified, then the subgraph induced
by its nodes is eliminated from the initial graph, and the
procedure is repeated having the newly formed graph as a
starting point.

A formal outline of the proposed algorithm, in the form of
pseudocode follows.

1: procedure CLUSTERIT(G)
2: Input graph G = (V, E , W ) and threshold value α
3: n = 0
4: while |V| > 2 do
5: k = 1
6: Ve(0) = V
7: while Q(Ve(k− 1)) < α do. Elimination Rounds
8: imin = argmin

i∈Ve(k−1)
R(i,Ve(k − 1))

9: Ve(k) = Ve(k − 1)\imin
10: k = k + 1
11: end while
12: VC = Ve(k − 1) . Isolation of Cluster’s Core
13: k = 1
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14: V = V\VC . Remove the Core from G
15: Va(0) = VC
16: while |V| > 0 do . Augmentation Rounds
17: imax(k) = argmax

i∈V\Va(k−1)
R(i,Va(k − 1))

18: Va(k) = Va(k − 1) ∪ imax(k)
19: CW (k) . Evaluation of Cost Function
20: V = V\imax

21: k = k + 1
22: end while
23: k∗ = argmaxk CW (k)
24: n = n+ 1
25: Ĉn = Va(k∗) . The n-th Identified Cluster
26: V = Va(k)\Va(k∗)
27: end while
28: end procedure
Finally, concerning the complexity of the proposed method,
as can be easily deduced by the above presented formal
outline, the complexity of each iteration is in the order of
|V|2, where |V| is the number of nodes of graph G. Hence,
assuming that k iterations are needed for the termination of
the algorithm, i.e. k clusters are identified, then the overall
complexity is in the order of k|V|2. Considering now the fact
that in most meaningful applications k � |V|, we maintain
than the complexity of the proposed method is O(|V|2).

IV. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
clustering method, as well as its rivals, by applying it in both
artificial as well as real data sets. Before proceeding with the
presentation of our simulation results let us first briefly present
the figures of merit we are going to adopt in order to compare
partitions resulting from the application of the methods under
comparison.

To this end let X = {X1, X2, · · · , XnX }, Y =
{Y1, Y2, · · · , YnY} be two partitions of the data set, with nX ,
nY denoting the corresponding number of clusters respec-
tively.

As our first figure of merit we adopt the Rand index [2] that
belongs in pair counting category of measures, and is defined
as follows:

R(X , Y) = 1

1 + α10+α01

α11+α00

, (11)

where α11 indicates the number of pairs of nodes which
are in the same community in both partitions, α10(α01) the
number of pairs of nodes which are in the same community
in partition X (Y) and in different communities in Y (X )
and finally, α00 the number of pairs of nodes which are in
different communities in both partitions. As it is evident from
its definition, Rand index takes values in the interval [0, 1]
with its maximum value indicating identical partitions.

As a second figure of merit we are going to use the
Normalized Mutual Information [2] which has its roots on
information theory and is defined as follows:

Inorm(X , Y) = 2I(X , Y)
H(X ) +H(Y)

, (12)

where Inorm(X , Y) denotes the mutual information, with
partitions X , Y considered as random variables, and H(X ),

H(Y) the Shannon entropy of X and Y respectively. As it
is clear from its definition, Normalized Mutual Information
takes its maximum value if the partitions under comparison
are identical, while it takes its minimum value if the partitions
are statistically indepented.

A. Experiment I
In this experiment we apply the proposed technique in

synthetic data and compare its performance against well
known clustering techniques, such as NCut, RAssoc, the
single, complete and average linkage clustering techniques,
and MCL. For the construction of a data set we used the
software presented in [15] which constitutes the state of the art
of graphs generator. The data set consisted of 500 graphs each
having a cardinality of node set equal to 700. The size of the
contained clusters varied in the range [50, 250], average degree
was 100 and both mixing parameters were set to 0.4. A sample
of a similarity (ideally clustered) matrix as well as the results
obtained from the application of the proposed method and its
rivals with the best performance are shown in Fig. 1. Although
Ncut results in an ideal clustering when the correct number of
clusters is provided, as it is clear from Fig.1, its performance
is vitally degraded if the given number of clusters is lower
(Fig.1(d)) or higher (Fig.1(e)), even by as much as one. The
same remarks can be stated concerning the sensitivity of MCL
with respect to inflation parameter r. More specifically, while
the clustering obtained for r = 2.2 coincides with the ideal
one, a small perturbation in this value leads to greatly different
results, as shown in Fig.1 (g),(h). This is more evident in
Fig. 2 where the histograms of the adopted figures of merit
are shown. Specifically, the histograms of Rand index (a) and
Normalized Mutual Information (b) obtained from the appli-
cation of the proposed (red), Ncut with the correct number of
clusters given (green), MCL with r = 2.2 (magenta), and the
partition with the best indices of the hierarchy (blue) technique
respectively are shown. Note how the performance of the
spectral based technique is degraded even for a small error
in the given number of existing clusters, which is the rule
in real applications where the number of clusters is unknown
(Fig. 2, (c),(d)). Note also the dependence of the MCL results
on the value of the inflation parameter (Fig. 2, (e),(f)).

B. Experiment II
The goal of this experiment is to indicate that there is

a resolution limit when clustering is based on global opti-
mization criteria. To this end a data set consisted by 500
graphs was constructed. The basic difference from the data
set used in the previous experiment was the strong diversity
of the cluster sizes. Each graph is composed by a number
of clusters whose sizes are coming from two populations.
Specifically, the first population is in the range 100 to 300,
while the second one is in the range 10 to 50. In addition
the edge weights were selected from two random populations;
one with high values for intra-cluster edges and one with low
values for inter-cluster edges. An example with the results we
have obtained from the application of the techniques under
comparison is shown in Fig.3. Moreover, as we can see from
Fig. 4, where the obtained histograms of the adopted figures of
merit are shown, in this kind of setup, the proposed method
clearly outperforms its rivals thus revealing its insensitivity

569



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1: Ideal clusters (a) and clustering results obtained from the
application of the proposed technique (b), NCut with k = 5 (the
correct number of clusters) and MCL with r = 2.2 (c), NCut with
k = 4 (d) and k = 6 (e), the “best” instance of average linkage (f),
and MCL with r = 2.0 (g) and r = 2.4 (h), respectively.

regarding the number as well as the size distribution of
the existing clusters. This is clearly not the case for Ncut,
even though the correct number of the existing clusters was
provided. MCL on the other hand, seems to be affected by the
aforementioned factors to a lesser degree, helped by the proper
selection of the inflation parameter, which as we have already
mentioned, controls the granularity of the clustering results. In
the given experiment, after a trial and error procedure (similar
to Experiment I), a selection of r = 6.3 provided the best
overall MCL performance. Finally, the very low performance
of the hierarchical method is attributed to the high overlap
degree of the edge weight populations.

C. Experiment III

In this last experiment, we apply the proposed technique
in a real proteins clustering problem. To this end, we have

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Histograms of Rand index (a) and Normalized Mutual
Information (b) obtained from the application of the proposed (red),
Ncut with the correct number of clusters given (green) and average
linkage (blue) technique respectively. In subfigs (c) and (d) are the
histograms of the same figures of merit, obtained from the application
of the proposed (red) and Ncut technique with the given number of
clusters being higher (green) and lower (blue) by 1, respectively.
Finally, subfigs (e) and (f) display the histograms of the above
mentioned metrics obtained from the application of MCL, with r =
1.8 (blue), 2.0 (green), 2.2 (red), and 2.4 (magenta), respectively.

(a) (b)

(c) (d)

Fig. 3: A typical similarity matrix of the data set used in Experiment
II (a) and the clustering results obtained from the application of the
proposed technique and MCL with r = 6.3 (b), Ncut with the correct
number of clusters given (c), and the best partition of the average
linkage hierarchy (d) respectively.

selected from the UniProt database,1 three well known pro-
tein groups; namely Globines, E3ligase, and Histone H1/H5
families, with populations 33, 27 and 135, respectively and
we have conducted the following experiment. We applied the

1All similarity matrices were retrieved from the SIMAP database
(http://liferay.csb.univie.ac.at/portal/web/simap/ ) using the provided Subma-
trix export tool.
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(a) (b)

Fig. 4: Histograms of Rand index (a) and Normalized Mutual Infor-
mation (b) obtained from the application of the proposed (red), Ncut
with the correct number of clusters given (green), MCL with r = 6.3
(magenta), and average linkage (blue) techniques, respectively.

proposed technique in each group of proteins separately and
their clustering was obtained. More specifically, three clusters
of size 6, 5 and 3 were identified from Globines group, four
clusters of size 11, 9, 2 and 2 were identified from E3ligase
and twelve clusters, with their sizes ranging between 2 to 30
were identified from the last protein Histone H1/H5 group.
Then, we applied the proposed method to the total similarity
matrix resulting from an “all-against-all” comparison of the
195 proteins and the obtained clustering is shown in Fig. 5 (a).
The proposed technique succeeds to identify exactly the same
clusters identified from its application in the above mentioned
groups separately, which is a clear indication of its robustness.
The same experiment was also repeated using MCL for values
of r ranging from 1.4 to 10. We observed that the number of
the identified clusters (and the overall quality of the obtained
clustering) increased with the increasing of r, up to a value
(of r ≈ 6), after which, further increasing r had no significant
impact on the outcome. Clustering results obtained from MCL
with r = 1.8 and r = 10 are depicted in Fig. 5 (b) and
(c), respectively. In order to further improve these results, we
proceeded thresholding the initial similarity matrix at different
similarity levels, increasing this way the separation between
clusters (essentially by removing bridge edges in the initial
graph). We concluded that (for this particular example) thresh-
old values between 0.4 and 0.6 presented the best balance
between removing (unwanted) inter-cluster and (useful) intra-
cluster edges. This procedure led to substantially improved
clusterings, as well as a relative insensitivity to the value of
r, giving the best results for r ∈ [1.8, 5]. As we can see from
Fig. 5 (d), the “best” clustering of MCL is virtually identical
to the result obtained by applying the proposed method in the
initial graph (i.e. without adopting any thresholding scheme).
Concluding, although the clustering example at hand can be
considered as a small-scale one, the obtained results are very
promising and indicative of the potential of the proposed
technique.

V. CONCLUSION

In this paper a new iterative graph based clustering tech-
nique was proposed. Three desirable characteristics of the
proposed technique were validated through a series of ex-
periments both in artificial as well as real protein data sets.
The advantages of the proposed technique against well known
and widely used clustering techniques were demonstrated.
Although a more exhaustive investigation is on the way, the
experiments we have conducted so far, have led to very
promising results regarding the problem of grouping together

(a) (b)

(c) (d)

Fig. 5: Clustering of the “all-against-all” similarity matrix, using
the proposed technique (a), MCL with r = 1.8 (b), r = 10 (c), and
MCL with r = 1.8 combined with proper thresholding (d).

proteins based only on sequence information.
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