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Abstract— Structural analysis over well studied transcriptional 
regulatory networks indicates that these complex networks are 
made up of small set of reoccurring patterns called motifs. While 
information theoretic approaches have been immensely popular, 
these approaches rely on inferring the regulatory networks by 
aggregating pair-wise interactions. In this paper, we propose 
novel structure based information theoretic approaches to infer 
transcriptional regulatory networks from the microarray 
expression data. The core idea is to go beyond pair-wise 
interactions and consider more complex structures as found in 
motifs. While this increases the network inference complexity 
over pair-wise interaction based approaches, it achieves much 
higher accuracy and yet is scalable to genome-level inference. 
Detailed performance analyses based on benchmark precision 
and recall metrics on the known Escherichia coli's transcriptional 
regulatory network indicates that the accuracy of the proposed 
algorithms is consistently higher in comparison to popular 
algorithms such as context likelihood of relatedness (CLR), 
relevance networks (RN) and GEneNetwork Inference with 
Ensemble of trees (GENIE3). In the proposed approaches the size 
of structures was limited to three node cases (any node and its 
two parents). Analysis on a smaller network showed that the 
performance of the algorithm improved when more complex 
structures were considered for inference, although such higher 
level structures may be computationally challenging to infer 
networks at the genome scale.  

Index Terms—Information theory, complex interactions, 
regulatory networks, inference. 

I.  INTRODUCTION 
A transcriptional regulatory network (TRN) represents the 

regulation of genes by transcription factors [1-3]. It is due to 
this regulation mechanism, cells have the ability to adapt to 
their external environment [1]; hence inferring the 
transcriptional regulatory networks is of great importance as 
they elucidate the behavior of cells. While a number of TRN 
inference approaches exists [4], this paper focuses on the 
microarray expression data based inference approaches. In this 
particular approach, patterns are scanned in the microarray 
expression data [4] and are aggregated in to a final network. 

Various classes of algorithms exist for TRN inference 
based on microarray expression data. Some of these popular 
classes are Bayesian networks [5], Dynamic Bayesian networks 

[6], Boolean networks [7], probabilistic Boolean networks [8], 
differential equations models [9] and information theoretic 
models [10-15]. Information theoretic models in particular have 
gained substantial attention due to their unique ability to 
exploit genome scale expression data. In this context, relevance 
networks (RN) [10-11], a general reverse engineering 
algorithm for inference of genetic network architectures 
(REVEAL) [12], algorithm for the reconstruction of accurate 
cellular networks (ARACNE) [13], and Context likelihood of 
relatedness (CLR) [14] are some of the popular information 
theoretic algorithms. 

A fundamental motivation of our proposed approach comes 
from Babu et al. [4] work that structurally organized a TRN in 
the following categories: (i) A basic unit, which consists of a 
single regulatory mechanism; (ii) Motifs, which are small 
reoccurring patterns of regulatory interactions and (iii) Global 
structure, which is essentially set of all regulatory interactions. 
Other structural analysis on complex networks [1, 16] 
including TRNs suggests that motifs form their building blocks 
and entire motif structures work together to achieve particular 
regulatory effects. Hence our premise for this work is based on 
the hypothesis that TRN inference algorithms must also 
consider scanning the microarray data for structures. With the 
exception of REVEAL, all other information theoretic 
algorithms build TRN's by scanning for individual edge 
patterns. While REVEAL does consider scanning for 
structures, it does not limit it to smaller structures (like motifs), 
which increases its computational complexity and hence is not 
applicable towards inference of large networks. Also, with 
different ordering of input data, REVEAL may infer a different 
network, and hence is not robust [15]. 

In this paper, we propose novel structure based information 
theoretic approaches to infer TRN's. In order to assess the 
performance of our proposed approaches we have chosen three 
other popular state of the art approaches: (i) CLR (ii) 
GEneNetwork Inference with Ensemble of trees (GENIE3) 
[17] and (iii) RN. CLR is one of the most popular information 
theoretic algorithm that performs quite well at the genome-
scale and is robust to both time-series and non time-series gene 
expression datasets. GENIE3 a recently proposed algorithm 
uses a fundamentally different data mining based approach to 
infer regulatory networks and provides very high inference  
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Figure 1. MI Computation Scheme 

 
accuracy. GENIE3 actually is the top-ranked inference 
algorithm that won the Dream-4 international reverse 
engineering contest [18] where it consistently outperformed 
other approaches. Our performance analysis based on 
benchmark precision and recall metrics on the Escherichia 
coli's network and data obtained using the standardized 
genenetweaver tool [19] showed that the proposed methods 
infer networks with higher accuracy at the genome scale as 
compared to both CLR and GENIE3 algorithms. 

This paper is organized as follows: Section II discusses the 
information theory based metrics used in the relevance network 
class of algorithms and outlines the proposed algorithms; 
Section III presents the results and detailed performance 
analysis of the proposed algorithms in comparison to CLR, RN 
and GENIE3; Section IV presents the conclusion and future 
directions based on this work. 

II. METHODS 

A. Data and Network Formulation 
Genes and transcription factors are two kinds of nodes in a 

transcriptional regulatory network (TRN). Considering g 
number of genes and t number of transcription factors, the total 
number of nodes in a network is N= t+g. A graph G(E,V) 
represents a TRN, where E is the set of edges and N is the set 
of vertices. Vertices here are genes and transcription factors 
whereas an edge represents regulation of a gene by a 
transcription factor. We further use the notations Gi, where i = 
1..g and Tj, where j =1..t to represent the set of all genes and 
transcription factors respectively. 
B. Information theoretic metrics 

Here we discuss some of the information theory metrics 
used in the reverse engineering algorithm proposed in this 
paper. 

1) Entropy 
Entropy (H) is the measure of average uncertainty in a 

random variable. Entropy of a random variable X with 
probability mass function p(x) is defined [20] as: ܪሺܺሻ ൌ െ ∑ ௑א௫݌ ሺݔሻ כ  ሻሿ   (1)ݔሺ݌ሾ݃݋݈
The entropy of a random variable is maximum when the states 
are equiprobable. It should be noted that entropy is a positive 
quantity and as the bias in the system increases, the entropy 
decreases. 

The concept of entropy over a single random variable can 
be further extended to a pair of random variables to obtain the 
joint entropy. The joint entropy [H(X,Y)] of a pair of discrete 
random variables (X,Y) with a joint distribution p(x,y) is 
defined as: ܪሺܺ, ܻሻ ൌ െ ∑ ௒א௑,௬א௫݌ ሺݔ, ሻݕ כ ,ݔሺ݌ሾ݃݋݈  ሻሿ (2)ݕ

Entropy computation as given in equation 2 can be 
extended to higher dimension variables: ܪሺܺ, ܻ, ڮ , ܼሻ ൌ െ ∑ ௓א௭,ڮ,௒א௑,௬א௫݌ ሺݔ, ,ݕ ڮ , ሻݖ ,ݔሺ݌ሾ݃݋݈                                                                         כ ,ݕ ڮ  ሻሿ (3)ݖ

2) Mutual Information 
Mutual Information (MI) measures the amount of 

information that can be obtained about one random variable by 
observing another one. MI is defined [20] as: ܫሺܺ, ܻሻ ൌ െ ∑ ௒א௑,௬א௫݌ ሺݔ, ሻݕ כ ݃݋݈ ሾ௣ሺ௫,௬ሻሿ௣ሺ௫ሻכ௣ሺ௬ሻ                   (4) 

MI can also be defined in terms of entropies as: ܫሺܺ, ܻሻ ൌ ሺܺሻܪ ൅ ሺܻሻܪ െ ,ሺܺܪ ܻሻ  (5) 
In other words, the shared or mutual information between 

two variables is obtained by subtracting the joint uncertainty 
from the sum of individual uncertainties. Given the expression 
data, the relationship between the genes is scored using the MI 
metric. 
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Figure 2. Example Scoring Scheme 
The MI computation as given in equation 5 can be easily 

extended to higher dimensions: ܫሺܺ, ሾܻ, ڮ , ܼሿሻ ൌ ሺܺሻܪ ൅ ,ሺሾܻܪ ڮ , ܼሿሻ െ ,ሺܺܪ ܻ, ڮ , ܼሻ    (6) 
While a number of continuous MI estimation approaches 

exist, we chose to implement the B-Spline approach as 
described in Daub et al. [21]. Unlike binning techniques, the 
B-Spline is not sensitive to the number of bins chosen. 
Gausian kernel density estimators have a better accuracy; 
however, their computational complexity is high. It has been 
observed that B-Splines produces results as accurate as 
Gaussian estimators but with lower computational complexity 
[22]. Hence we have chosen the B-Spline based density 
estimation approach for MI computations. Moreover, we have 
chosen the number of bins as five and the spline order to two 
in all the algorithm implementations. However, it should be 
noted that any other MI estimator can also be seamlessly used 
in our proposed algorithms; the contributions of this paper 
builds on the computed MI values irrespective of the 
underlying method used for the same. 

3) Z-Scores 
Z-score, also known as standard score, is a statistical 

measure which normalizes a variable based on its mean and 
variance. Z-score's for network inference was first 
implemented in the CLR algorithm. CLR applies an adaptive 
background correction step to eliminate false connections and 
indirect influences which involved the computation of Z-
scores. For computing the CLR score between a pair of nodes 
(i,j) in the TRN, Z-score (Z1) over the MI values of all pairs in 
which the first variable is i is computed, then Z-score (Z2) over 
the MI values of all pairs in which the second variable is j is 
computed. After computing Z1 and Z2, the final score for an 
interaction is given as ඥܼଵଶ ൅ ܼଶଶ. It should be noted that if Z1 

or Z2 are negative they are set to zero i.e. they are not 
considered in the CLR score computation. We will be using 
two simple implementations of these Z-scoring schemes in our 
proposed approaches. 

C. Proposed Approaches: sCoIn sCoIn Z1 and sCoIn Z2 

The sCoIn (Scoring algorithm based on COmplex 
INteractions) algorithm, like the relevance network class of 
algorithms, is based on the mutual information metric. 
However, unlike these algorithms and our proposed 
approaches in past [23-28], in which network inference is 
based on just pair-wise MI computations, sCoIn considers 
inference of more complex structures. sCoIn starts with 
computing the mutual information between a 
gene/transcription factor and every other transcription factor 
that are stored in bin-1. After computing the pair-wise scores, 
sCoIn then computes MI between a gene/transcription factor 
and every two node combination of transcription factors and 
store them in bin-2. The algorithm then computes the MI 
between a gene/TF and all possible three node combination of 
TF’s and stores them in bin-3. In this fashion, sCoIn computes 
MI between a gene/TF and various number of its potential 
regulator combinations. Figure 1 illustrates this MI 
computation scheme; the MI's between a gene/TF and every 
regulator is stored in bin 1, the MI's between gene/TF's and 
every possible two node combination is stored in bin 2 and so 
on. The number of bins, M, is a user selected threshold. The 
number of combinations in each bin, b (b=1,…,M), is given as 
follows: ݊௕ ൌ ቀܾݐቁ  (7) 

Hence, the total number of TF combinations considered 
across all the bins for any particular gene/TF is given by: ݊௖ ൌ ∑ ݊௕ெ௕ୀଵ   (8) 

Every MI score between a gene/TF (i) and its possible 
regulators, i.e., TF combinations in bin (k) is designated as ௜ܵ,௝௞ . 

As the MI values between higher number of variables is 
usually higher [29], i.e. MI values between different number 
of variables are at different scales, the scores in any bin, k, 
( ௜ܵ,௝௞ ) needs to be normalized first; such bin-wise normalized 
scores can then be combined to achieve a final score for each 
regulator that designate its suitability of acting as a regulator 
for the gene/TF under question.  The bin-wise normalized 
score between a gene/TF (i) and every other TF (j) in bin k is 
given by: ܤ ௜ܵ,௝௞ ൌ ∑ ௜ܵ,௔௞௡ೖ௔ୀଵ , ݁ݎ݄݁ݓ ௝ܶ א ݊݋݅ݐܾܽ݊݅݉݋ܿ െ ܽ݇ כ ∑ ௜ܵ,௔௞௡ೖ௔ୀଵ ; ݅ൌ 1, … , ݊; ݆ ൌ 1, … , ;ݐ ݇ ൌ 1, … ,  ሺ9ሻ       ܯ

Once the bin-wise score is computed the final score 
between a gene/TF (i) and its potential regulators, i.e., TF (j) 
across all the bins is given by: ܨ௜,௝ ൌ ෍ ܤ ௜ܵ,௝௞ெ

௞ୀଵ ; ݅ ൌ 1, … , ݊; ݆ ൌ 1, … , ;ݐ ݅ ൌ 1, … , ܰ      ሺ10ሻ 

Hence, the scores are computed for each gene/TF 
individually; however, for each such node, we first compute 
the bin-wise score of each TF showing its potential to regulate  
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this node and then sum up such normalized scores across all 
bins to find the over-all suitability of this TF to regulate the 
node under consideration. Thus, our simple scoring scheme 
combines the effects of higher level structures (stored in each 
higher order bin) for each gene/TF individually. The final 
scoring matrix is exactly similar to any other relevance 
network based scheme, where the rows designate a node 
(gene/TF) and the columns designate all of possible regulators, 
i.e., TFs. Hence, we can apply a threshold on this final scoring 
matrix to obtain the final connectivity matrix. Figure 2 gives 
an example computation scheme of scores. In this example, 
scores were computed between a gene node and four TF's. 
Although the final scoring matrix will have five rows, this 
example is only showing the computations for the first row 
which designates the gene node. 

SCoIn Z1 and sCoIn Z2 are extensions of sCoIn algorithm 
in which the initial MI matrix is further updated using Z-
scores before our scoring scheme is applied. Again as MI 
values between different numbers of variables are at different 
scales, Z-score computations were performed for each bin 
separately. In sCoIn Z1 algorithm, the MI values are 
standardized for each gene/TF separately considering the 
computed means and standard deviations for each row in bin k 
separately, as highlighted in figure 1, where as in sCoIn-Z2, 
the MI values were standardized based on the computed 
means and standard deviations across both the bin-wise row 
and column (i.e., for all n nodes) levels as in the CLR 
algorithm. Hence ௜ܵ,௝௞  now denotes the z-scores (instead of the 
MI values as done earlier), and we next apply our scoring 
scheme to compute the normalized scores between genes/TF's  

and their regulator TF's as described in the sCoIn algorithm. 
The pseudo-code for the algorithms is given in figure 3. 

Note that while we the proposed approaches infer 
structures, they do not attempt to infer a specific kind of motif. 

D. Network and Data Sets 
1) Escherichia Coli Network and Data using the 

genenetweaver tool: 
The known complete Escherichia coli's network and data 

sets was obtained using the popular genenetweaver tool. The 
tool provided six types of data sets viz. wild-type, knockouts, 
knockdowns, multi-factorial perturbations, and time series. We 
only picked the time series data sets for our analysis (the 
algorithm works for non time-series data too). All the data sets 
were generated under the DREAM 4 2)challenge settings. The 
time series data set had ten different gene expression matrices 
under different perturbations and we selected the first data set 
for our analysis. The time series data had 21 time points with a 
time interval of ten minutes between each time point. The first 
time point in the data is the control where the expression levels 
of untreated cells are recorded. For performance analysis, a 
simple fold change model was implemented. Using the control 
time point, the fold-change for every time point was computed. 
The fold change is defined as the ratio between the expression 
levels of a gene/TF at that time point and the control time 
point. The network provided by genenetweaver had a total of 
1389 genes and 176 transcription factors. 

3) Performance analysis metrics 
The benchmark precision and recall metrics were used in 

the sensitivity analysis of the proposed approaches. While a 
number of definitions exist for such precision and recall 
metrics [30], in this paper, recall is defined as Te/(Te+Me) and 
precision is defined as Te/(Te+Fe); where Te is the sum of 
correctly inferred edges, Fe is the sum of wrongly inferred 
edges and Me is the sum of edges that existed in the actual 
network but were not inferred by the algorithm. 

 
 

INPUT :
1. Expression Data :data
2. Number of nodes: N
3. Regulator List : T
4. Number of regulators : t
5. Maximum number of regulator combination : M

OUTPUT :
N X t score matrix : F

ALGORITHM :
Generate list of all possible regulator combinations
%Initialize mutual information matrix
muInfoMat ( N , nc )= 0 ;
for i = 1 to N
for j = 1 to nc

if i is not in regulator combination
%here we can have the MI or Z− scores
muInfoMat ( i , j ) = mutual information using eqn 6 ;

else
muInfoMat ( i , j ) = 0 ;

end
end

end
for i = 1 to N
for j = 1 to t
Obtain scores in F using equation 10 ;

end
end
return F ;

Figure 3. Pseudo-code for sCoIn approaches 

0 0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

Recall

P
re
ci
si
on

 

 

sCoIn
sCoIn Z1

sCoIn Z2

Figure 4. comparison of sCoIn approaches 

575



III. RESULTS AND DISCUSSION 
1) Comparison Analysis of SCoIn, sCoIn Z1, and sCoIn Z2 
Comparison analysis of all the three proposed algorithms 

was performed to choose the best performing scheme. 
Hundred different thresholds were applied over final score 
matrix obtained from each of these schemes using the 
genome-scale Escherichia coli's dataset and the precision and 
recall values were computed for every threshold used. The 
precision-recall plots of the algorithms are shown in figure 4. 
The plot shows that sCoIn- Z1 consistently gives higher 
precision values for the same recall as compared to the other 
two proposed algorithms. sCoIn- Z1 will hence be used for rest 
of the analysis. 

2) Comparison analysis of sCoIn Z1, CLR, RN, and 
GENIE3 

Comparison analysis of the three popular existing 
approaches CLR, RN, and GENIE3 with sCoIn-Z1 was 
performed using precision recall metrics as discussed in 
previous section. GENIE3 and CLR showed similar accuracy 
behavior. With initial peaks i.e. higher precision at lower 
recall values, GENIE3 had a slight edge over CLR. SCoIn-Z1 
consistently showed higher precision values as compared to 
CLR and GENIE3. The plot for this analysis is shown in 
figure 5. 

As mentioned earlier the number of bins and spline order 
parameters of the B-Spline MI computation approach were set 
to five and two respectively. Also when a very high threshold 
is used a single addition of a correctly inferred edge or a 
wrongly inferred edge will increase or decrease the precision 
by a huge margin as the number of edges inferred is small, due 
to this we observe a very high rise/fall in precision of the 
algorithms when higher thresholds are used. 

3) Sensitivity analysis on number of bins 

Note that the earlier results were generated by considering 
only up to 2 bins in the proposed sCoIn class of algorithms. 
However, as sCoIn can potentially consider even higher 
number of TF combinations for inference, in this analysis we 
study the accuracy behavior of the sCoIn-Z1 algorithm by 
considering up to two, three and four number of bins 
respectively. As the computational complexity of the scoring 
scheme increases exponentially with more number of bins, a 
smaller sized network with 100 genes and 16 TF's was chosen 
for this particular analysis. Again the network and data were 
obtained using the genenetweaver tool. Plots in figure 6 show 
that there was a small improvement in accuracy when higher 
numbers of bins were considered for inference. Hence, to keep 
our approach scalable to genome-scale inference, it is 
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sufficient to consider up to 2-bins only; higher order bins may 
only give a slight improvement in the accuracy. We however 
plan to implement a parallelized version of sCoIn to validate 
this observation for even genome-scale networks. 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a novel scoring scheme to 

design inference methods that can consider more complex 
regulatory interactions. Unlike existing approaches, the 
proposed algorithms do not assume all interactions to be pair-
wise. Based on the benchmark metrics of precision and recall, 
we have shown that the proposed approaches infer networks 
with higher accuracy compared to popular state of art 
approaches at the genome-scale. In fact, our results 
demonstrate that the proposed approach performs even better 
than GENIE3 which has reported the best performance till 
date for reverse engineering gene regulatory networks. 
Moreover, restricting the proposed scoring scheme to 
considering only up to two bins provides sufficient inference 
accuracy and can easily scale to genome-level inference as 
demonstrated in our results. Our structure based inference 
approach as presented here is only a first step towards 
designing more accurate regulatory network inference 
algorithms which continue to be an area of active research. 
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