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Abstract— In this paper we present a model that combines circuit 
analysis with Maxwell’s equations of electromagnetic theory and 
non-linear cable theory, to explain the action of the induced 
electric field upon a nerve fiber. The current source and 
stimulating coil are modeled as a series RLC circuit. The induced 
electric field distribution within a homogeneous cylindrical 
volume conductor modeling the arm is calculated for different 
time courses of the current. The effect of the induced electric field 
upon the nerve is determined with a cable model which contains 
active Hodgkin-Huxley elements. The possible non-homogeneities 
of the nerve’s electrical properties are also considered, and we 
assess their influence on the activation of the nerve.  

Keywords- Magnetic stimulation, stimulating coil, non-
homogenous Hodgkin-Huxley model, activation function. 

I.  INTRODUCTION  
The preoccupation for improving the quality of life, for 

persons with different handicaps, led to extended research in 
the area of functional stimulation. Due to its advantages 
compared to electrical stimulation (painless stimulation, 
magnetic field passes high resistive layers, etc.), magnetic 
stimulation of the human nervous system is now a common 
technique in modern medicine. 

The paper starts by emphasizing the mechanism of 
magnetic stimulation (computation of induced electric field, the 
description of the stimulating circuit and the behavior of the 
nerve fiber – active cable model). Then, a computer model with 
all its characteristics is presented. Finally, we assess the 
influence of the variation of the electrical parameters of the 
nerve fiber on its activation and important conclusions are 
drawn. 

II. THEORETICAL CONSIDERATIONS 

A. Mechanism of magnetic stimulation  
The magnetic stimulation is based on Faraday’s law and is 

referred to induce an electric field in nervous tissue by an 
alternating current flowing through a coil, placed near the fiber 
to be stimulated. According to the electromagnetic field theory, 
the electric field inside the tissue can be computed by means of 
the scalar electric potential and the vector magnetic potential: 
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The first term of the electric field is called “primary electric 
field”, and it is due directly to the electromagnetic induction 
phenomenon, while the second term represents the “secondary 
electric field”, due to charge accumulation on the tissue-air 
boundary [1]. 

According to (1), the computation of the electric field due 
to electromagnetic induction is done by means of the magnetic 
vector potential [1]: 
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where the vector dl  represents the differential element of the 
coil, the vector r  is the distance from the coil element to the 
field point, and N is the number of turns of the coil. 

For coils of different shapes, one can compute A  using the 
following technique: the contour of the coil is divided into a 
certain number of equal segments, and the magnetic vector 
potential in the calculus point is obtained by adding the 
contribution of each segment to the final value [2], [3]. 

A common application of magnetic stimulation is to excite 
peripheral nerves [1]. We assume that the arm can be modeled 
as a cylindrical volume conductor. The secondary electric field 
depends on the geometry of the tissue-air interface, considered 
a cylindrical surface [4]. This term is computed knowing that 
on the surface, the boundary condition to be fulfilled is: 

VA EnEn ⋅−=⋅  (continuity of the normal component of the 
current density vector, valid considering the fact that the 
regime of the electromagnetic field is quasistatic (f < 1000 
(Hz)) and therefore the time variation of the charge 
accumulated on the tissue-air boundary is zero). The electric 
potential inside this domain, V, is numerically evaluated by 
solving Laplace equation ( )0=ΔV  with Neumann boundary 

conditions inside the tissue ⎟
⎠
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V . In order to solve this 

problem we implemented a Matlab routine based on the Finite 
Difference Method. The system of equations created is solved 
using Gauss elimination algorithm.  

For the operating frequency of magnetic stimulation, the 
electrical and magnetic properties of the medium are assumed 
to be σ=1 (S/m) and μ=μ0. 
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B. Stimulating circuit  
The coil current I(t) ( A  is proportional to I – see (2)) is 

predicted by a series RLC model of the current stimulator. If 
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⎛  the circuit works in an overdamped transient state. 

The current waveform through the discharging of a capacitor, 
with an initial voltage U0, to the coil is: 

 ( ) ( )ttLUI αωω −⋅= expsinh0  (3) 

where R/(2L)=α , 1/LC−= 2αω , C is the capacitance, and 
R and L are the resistance and inductance of the coil, 
respectively. In this case, the current intensity increases from 
zero (for t=0) to its maximum, and then decreases tending to 
zero, without changing its sense; theoretically the current is 
canceled for t → ∞. 

If the above inequality is reversed, the circuit works in an 
underdamped transient state, and therefore the current is 
computed using: 
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Now, the current intensity has a damped oscillatory variation 

and its amplitude decreases exponentially in time: 
t

L
R

e
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2 . The 
oscillation frequency is: LCf ⋅= π2/1 .  

The inductance is evaluated by taking the line integral of the 
vector potential around the coil for unit current: dlAL ⋅= ∫ . 

This formula permits the computation of inductances of the 
special coils; these coils are designed to improve focality (the 
ability of a coil to stimulate a small area of tissue). The 
resistance is evaluated using the analytical formula: 
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where ρCu - copper resistivity; r – radius of the coil; N – 
number of turns; rw - radius of the wire conductor. 

C. Hodgkin-Huxley model 
Neuronal structures can be modeled in the form of a cable and 
the membrane response can be computed by solving the 
equations describing the transmembrane potential across the 
membrane of the cable in the presence of induced electric 
fields [5], [6]. The relation between the transmembrane 
potential along an infinitely long nerve fiber (placed along the 
x axis) in the presence of induced electric fields is given by the 
passive cable model: 
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where Vm is the transmembrane voltage, Ex the axial 
component of the induced electric field, λ the space constant of 
the cable and τ the time constant. 

The term on the right of (6) represents the activation 
function, equal to the spatial derivative of the electric field 
induced along the nerve fiber. This term is computed using the 
method described in paragraph A. 

While the passive cable model provides the way of the 
interaction between the induced electric field and the nerve, it 
does not completely describe the dynamics of nerve 
stimulation. In order to study the stimulation and propagation 
of action potentials, we must consider an active membrane 
model. We use the Hodgkin-Huxley model to represent the 
nerve membrane (Fig. 1). To implement this model, we modify 
the initial passive cable model. The extracellular potential 
produced by the fiber’s own activity is negligible. This 
assumption is valid because the extracellular potential 
produced by an action potential propagating along a single 
nerve axon lying in a large extracellular volume conductor is 
less than 1 mV [7]. 

The resistance per unit length of the fiber ri can be expressed in 
terms of the fiber radius a and the resistivity of the axoplasm 
Ri, as: ri= Ri/π a2. The membrane current per unit length im is 
related to the membrane current density Jm by the expression: 
im=2πa Jm; similarly the membrane capacitance per unit length 
cm is related to the capacitance per unit area Cm by: cm=2πaCm. 
Finally we replace the membrane resistance per unit length rm 
by an active model of time and voltage dependent sodium, 
potassium and leakage channels. With these changes, the cable 
equation becomes: 
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where gNa, gK and gS are the peak sodium, potassium and 
leakage membrane conductances per unit area, and ENa, EK and 
ES are the sodium, potassium and leakage Nerst potentials. The 
gating variables m, n, h are dimensionless functions of time and 
voltage which vary between zero and one: 
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Figure 1.  Hodgkin-Huxley model of the active cellular membrane [1] 

α and β are voltage dependent rate constants, determined from 
the voltage clamp measurements: 

 ( )

1

401,0

10
40

−

−−=α
⎟
⎠
⎞

⎜
⎝
⎛ −− mV

m
m

e

V  (11) 

 
⎟
⎠

⎞
⎜
⎝

⎛ −−

=β 18
65

4
mV

m e  (12) 

 
⎟
⎠

⎞
⎜
⎝

⎛ −−

=α 20
65

07,0
mV

h e  (13) 

 

1

1

10
35

+

=β
⎟
⎠
⎞

⎜
⎝
⎛ −− mVh

e

 (14) 

 

1

)55(01,0

10
55

−

−−=α
⎟
⎠
⎞

⎜
⎝
⎛ −− mV

m
n

e

V  (15) 

 
⎟
⎠

⎞
⎜
⎝

⎛ −−

=β 80
65

125,0
mV

n e  (16) 

We assumed that the resting potential is -65 (mV), Vm is 
measured in (mV), α and β in (ms-1). Equations (7) - (16) 
constitute a system of four, nonlinear, coupled partial 
differential equations.  

The values of model parameters used in our computations 
are given in Table 1 [1]: 

TABLE I.   

ENa Sodium Nerst potential 50 (mV) 
EK Potassium Nerst potential -77 (mV) 
ES Leakage Nerst potential -54.387 (mV) 
gNa Sodium conductance 120 (mΩ/ cm2) 
gK Potassium conductance 36 (mΩ/ cm2) 
gS Leakage conductance 0.3 (mΩ/ cm2) 
Cm Membrane capacitance 1 (μF/ cm2) 
Ri Resistivity of axoplasm 0.0354 (kΩ ּ◌cm) 
a Fiber radius 0.0238 (cm) 

III. RESULTS  
The magnetic coil considered in our simulation has 30 

turns, a radius of 25 (mm) and the wire’s radius is 1 (mm). The 
computed inductance of this coil is 0.165 (mH) [8]. The coil is 
part of a magnetic stimulator that also comprises a capacitance, 
C=200 (μF). If the total resistance of the circuit (including the 
coil and wires resistances) is considered to be 1.75 (Ω), the 

circuit elements respect the following formula
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therefore the transient regime of the circuit is underdamped. 
For a larger value of the total resistance (R=3 (Ω)), the 
inequality is reversed and the transient regime is overdamped. 
In the paper we studied both cases, because the overdamped 
regime is used for single pulse magnetic stimulation, while the 
underdamped oscillatory regime is more suitable for repetitive 
stimulation. 

Fig. 2 shows the geometry of the problem, for both cases. 
One can see that the coil is parallel with the tissue, but with 25 
(mm) displacement with respect to the cylinder axis.  

In order to obtain the transmembrane potential as a function 
of distance and time, first we modulate the electric field 
gradient in time ( ztzzE ∂∂ /),( ). The electric field gradient 
represents the activation function and is calculated along the 
cylinder (the arm) – Oz axis, on a line with y=0 (mm) and x= 
25–6.25 = 18.75 (mm), that is on a depth of 6.25 (mm) in the 
tissue, below the edge of the coil.  

 

Figure 2.  Geometry of the problem 

Our simulations start with the overdamped regime. For 
simulation purposes, the initial voltage on the circuit’s 
capacitor is set to U0=30 (V), and Fig. 3 shows the induced 
electric field gradient as a function of time and distance along 
the fiber. 

 
Figure 3.  The activation function evaluated along the length of the nerve 

fiber considering an overdamped transient regime 
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Then, we solve Eqn. (6) – (15) numerically, using a 
software medium: Matlab. The transmembrane potential 
Vm(x,t) and the three gating parameters m(x,t), n(x,t) and h(x,t) 
are computed using the method of finite differences, 
implemented with an iterative algorithm (we compute the value 
of each parameter knowing its value for the previous time step 
- 0.1 (ms)). The space discretization uses a step of 5 (mm). It is 
assumed that the membrane is initially at rest: 
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The transmembrane voltage is taken to be its resting value 
and the initially m, n and h each are evaluated at the resting 
potential -65 (mV). 

The boundary conditions of the problem, applied for 
Lx ±= , far from the region where the stimulus strength is 

large, are that the axial gradients in the transmembrane 
potential and the three gating parameters vanish. 

 0
x
n

x
h

x
m

x
mV

=
∂
∂

=
∂
∂

=
∂
∂

=
∂

∂
 (18) 

The model is used to determine the response of the nerve 
membrane, the action potential, to the applied electric field, for 
different values of the initial voltage on the capacitor of the 
stimulation circuit.  

When the circuit works in an over-damped transient 
regime, the minimum value for the initial voltage on the 
circuit’s capacitor, required to produce fiber activation, is U0= 
37 (V). For U0= 30 (V) the nerve fiber is not stimulated. Not 
the same applies for an underdamped transient state, when an 
action potential is evoked much earlier, at U0= 10 (V) (Fig. 4 – 
the second curve). 

One can see that, after a latency period, the transmembrane 
potential rises rapidly to the value of about 50 (V).  

The first sets of stimulations were performed to investigate 
the latency period, which is different for the two types of 
transient regime. For both cases, we considered the same initial 
voltage on the capacitor U0= 50 (V). One can see in fig. 5 that 
we achieve activation of the nerve fiber in both cases, but the 
latency period is much shorter for the underdamped case (0.35 
(ms)) than for the overdamped one (1.7 (ms)). Also, by 
comparing the results in fig. 4 and 5, one can notice that the 
value of the initial voltage on the capacitor does not influence 
the shape of the nerve response (this one obeys the law of “all 
or nothing”), but a larger value of this voltage leads to a shorter 
latency period until an action potential arises. 

 

Figure 4.  Variation of the transmembrane potential and the three gating 
parameters in time, 1 – for an underdamped oscillatory regime, U0= (10 V); 2 

– overdamped regime, U0= 37 (V) 

 
Figure 5.  Variation of the transmembrane potential and the three gating 
parameters in time, for U0= 50 V. 1 – underdamped and 2 – overdamped 

regime  

The three – dimensional plot in Fig. 6, shows the 
depolarized portion of the nerve has been stimulated, while the 
hyperpolarized portion is not. One can also notice the speed of 
the wave, the latency period and the site of stimulation.  

 
a) 

1
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b) 

Figure 6.  Nerve fiber response to magnetic stimulation – action potential. 
The vertical axis represents the action potential, while the horizontal axis 

represent the distance along the fiber and the necessary time for the discharge 
of the capacitor in the stimulator’s equivalent circuit a) over-damped regime 

and b) underdamped regime 

In most of the publications the electrical properties of the 
membrane are considered uniform along the fiber, even in the 
original model, elaborated by Hodgkin and Huxley [1], [5], 
[10]. So far, we considered that the electric parameters in the 
model are constant along the nerve fiber. This assumption may 
not always be true, considering the fact that the human tissue 
is, always, a very non-homogenous area. Nerve fiber models 
with parameter variability within the fiber were investigated in 
[11], resulting in a change of the excitation threshold up to 
20% compared to the standard model, when varying only a 
parameter. Compared to our model, they used a 
compartmentalized nerve fiber model, adopted from McNeal. 
Other investigations referred to the importance of considering 
the undulation of the nerve fiber, which significantly influences 
the excitation threshold [7].  

Unlike the existing publications, we assume that the electric 
parameters of the membrane vary within a range of 10% from 
the generally assumed value and they have a sinusoidal 
variation along the nerve fiber [9]. The electrical parameters 
we changed are: gNa – Sodium conductance; gK – Potassium 
conductance and Cm – Membrane capacitance. We assumed 
that: 
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where j represents a parameter that follows the length of the 
nerve. 

Next, our work consisted in assessing the influence of this 
variation of the parameters on the nerve fiber activation 
threshold. We considered first the overdamped state, and we 
represented in Fig. 7 the behavior of the fiber for different 
cases. The first line -1, represents the behavior for constant 
parameters of the fiber, and an initial voltage on the capacitor 
below 37 (V). Line 2 is still for constant parameters, but since 
U0=37 (V), one can notice that the fiber was now activated. 

The third line considers a variation of the Cm parameter, and in 
that case, the activation appears at the same value of U0, but 
with a slightly shorter latency. Line 4 is drawn for a variable 
gNa, but in this case, the activation only occurs for U0>100 (V)! 
The last curve - 5 – corresponds to a variable gK, where an 
activation can be noticed even for U0=30 (V)! 

So far we considered that only one of the three parameter 
changes at the time, but next (Fig. 8) we will emphasize what 
happens if all the parameters change simultaneously. Curve one 
shows that for constant parameters the nerve fiber is activated 
when U0=37 (V). Curve two shows that if all the parameters 
change, the nerve is no longer activated for the same value of 
the initial voltage, but the fiber is activated again – 3 - when the 
voltage applied rises up to U0=45 (V). 

 

Figure 7.  Variation of the transmembrane potential in time, for an over-
damped transient regime, considering different variations of the electric 

components of the nerve membrane  

 

Figure 8.  Variation of the transmembrane potential in time, for an over-
damped transient regime, considering the variations of all the electric 

components of the nerve membrane  

The same study was resumed for the underdamped transient 
state, and we represented in Fig. 9 the behavior of the fiber for 
different cases. The first line -1, represents the behavior for 
constant parameters of the fiber, and an initial voltage on the 
capacitor below 10 (V). Line 2 is still for constant parameters, 
but since U0=10 (V), one can notice that the fiber was now 
activated. The third line is drawn for a variable gNa, but in this 
case, the activation only occurs for U0=25 (V)! Line 4 
considers a variation of the Cm parameter, and in that case, the 
activation appears at the same value of U0 as for constant 
parameters. The last curve - 5 – corresponds to a variable gK, 
where an activation can be noticed even for U0=5 V!  

If all the parameters change simultaneously, Fig. 10 shows the 
nerve fiber behavior for an underdamped state. Curve one 
shows that for variable parameters the nerve fiber is not 
activated when U0=10 (V), even though the nerve is activated 
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for constant electrical parameters along the fiber– 2. For 
variable parameters – 3 - when the volt-age applied rises up to 
U0=20 (V) we can, again, achieve the activation of the nerve. 

 

Figure 9.  Variation of the transmembrane potential in time, for an  
underdamped transient regime, considering different variations of the electric 

components of the nerve membrane  

 

Figure 10.  Variation of the transmembrane potential in time, for an under-
damped transient regime, considering the variations of all the electric 

components of the nerve membrane  

IV. DISCUSSIONS AND CONCLUSIONS 
In our paper we have computed the response of the nerve 

fiber to magnetic stimulation. Three aspects of electromagnetic 
stimulation are considered together in one model: the current 
pulse shape (over or under damped), the spatial distribution of 
the induced electric field and the interaction of the electric field 
with the nerve. 

Depending on the operating mode of the stimulation circuit 
(overdamped or underdamped state), the action potential is 
evoked at different values of the voltage on the circuit’s 
capacitor. For the overdamped transient regime, the initial 
voltage that leads to stimulation must be equal to or larger than 
37 (V). For the underdamped regime, this value is U0 = 10 (V). 
For the same value of the initial voltage on the capacitor 
(50(V)), the current pulse corresponding to an underdamped 
transient state leads to a shorter latency period that the one 
computed for the overdamped case (0.35 (ms) compared to 1.7 
(ms)). 

Fibers with different diameters or membrane properties 
have different stimulus thresholds. In this paper we 
investigated the influence of the membrane electric parameter 
variability upon the excitation threshold, for two transient 
regime of the stimulating circuit. One can notice that the 
variation of the Cm parameter will not significantly influence 
the activation threshold of the nerve.  

However, a variation of gNa will always lead to a higher 
threshold. For the overdamped state, the excitation threshold 

rises up almost three times compared to the standard model, 
where the electric parameters are constant (U0=100 (V), while 
for the standard model U0=37 (V)). In the underdamped 
transient state, the variation of gNa determines an increasing of 
250% of the excitation threshold compared to the standard 
model (U0=25 (V) while for the standard model U0=10 (V)). 

A variation of gK will lead to a slightly lower threshold 
compared to the model with constant parameters (U0=30 V for 
the overdamped case and U0=5 V for the underdamped state).  

When all parameters vary simultaneously, the value of the 
threshold is always higher then the one for constant parameters. 
For overdamped transient state of the circuit, the variability of 
the parameters leads to a change of the excitation threshold up 
to 21.6% compared to the standard model. For the 
underdamped state, the threshold for variable parameters is 
double compared to the initial one. This is due to the role 
played by each type of ions in the dynamic of the nerve fiber.  
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