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Abstract–A mathematical tool, namely the Kelvin transformation, 
has been employed in order to derive analytical expressions for 
important hydrodynamic quantities, aiming to the understanding 
and the study of the blood plasma flow past a Red Blood Cell 
(RBC). These quantities are the fluid velocity, the drag force 
exerted on the cell and the drag coefficient. They are obtained by 
employing the stream function ψ which describes the Stokes flow 
past a fixed cell. The RBC, being a biconcave disk, has been 
modelled as an inverted prolate spheroid. The stream function is 
given as a series expansion in terms of Gegenbauer functions, 
which converge fast. Therefore the first term of the series suffices 
for the derivation of simple and ready to use expressions. 
 
Index Terms – mathematical model, Kelvin transformation, Stokes 
flow, red blood cell, settling velocity. 

I. INTRODUCTION 
Stokes flow has been employed for describing the flow of 

many bio-fluids, such as the blood serum [1, 2, 3]. This is 
mainly due to the physical characteristics of the fluid, 
(density, viscosity, etc.), the low fluid velocity and the small 
size of the presented “particles”. Blood plasma flow past a red 
blood cell has been modelled as Stokes flow past a solid 
inverted prolate spheroid [4]. The stream function ( )ψα r'  has 
been analytically obtained by employing the Kelvin 
transformation and it is given as a series expansion of 
Gegenbauer functions. Kelvin inversion has also been 
employed for solving exterior problems with Dirichlet and 
with Neumann boundary conditions [5, 6, 7, 8].  

In the present work, we exploit this concept in order to 
calculate the velocity field of the fluid, the drag force zF  
exerted on the cell and the drag coefficient [9]. Furthermore 
we calculate the coefficient DReC , with Re being the 
Reynolds number characterising the flow, which in our case is 
Re << 1. Since the stream function is given through a fast 
converging series expansion, the first term of the series seems 
to be adequate, in order to gain simply “closed” formulas for 
the above mentioned quantities revealing their behaviour.  

The structure of the manuscript is as follows. In Section II 
we describe the methodology we followed for the derivation 

of the stream function. The velocity components, the drag 
force and the drag coefficient are derived in Section III, where 
the obtained results are explained and discussed.  
 

II. STATEMENT OF THE PROBLEM 
In this model, we consider the axisymmetric Stokes flow 

around an inverted prolate spheroid [4]. We assume a uniform 
velocity with magnitude U, which is parallel to the x3-axis in 
the negative direction. We also consider the inverted prolate 
spheroid as being a stationary and isolated solid, that is having 
its centre at the origin of a Cartesian coordinate system 
( )1 2 3x , x , x , as it shown in Figure 1. 
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Figure 1. Stokes flow around an inverted prolate spheroid. 

 
The problem is then defined by the equations (1)-(4) as 

follows 
( )4E' ψ 0, V',α = ∈r' r'  (1) 

( )ψ 0, V',α = ∈ ∂r' r'  (2) 

( )ψ
0, V',

n
α∂

= ∈ ∂
∂

r'
r'   (3) 

21ψ ' U, r ' ,
2α → ϖ → +∞   (4) 
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where V'  is the exterior fluid domain, V'∂  denotes the surface 
of the inverted prolate spheroid, 2E'  is the Stokes operator, 

4 2 2E' E' E'=  is the Stokes bistream operator, r'  is the 
position vector, ( )ψα r'  is the stream function, U is the fluid 
velocity and 'ϖ  is the radial cylindrical coordinate. On the 
surface of the inverted prolate spheroid we impose a no slip 
condition (2). We also assume that the inverted prolate 
spheroid (RBC) is impenetrable (3), which is true in 
pathological situations and finally, since the fluid extends 
indefinitely towards all the directions, the asymptotic relation 
(4) has to be satisfied. 
The methodology for solving (1)-(4) is as follows. First, we 
express the problem at hand in the inverted prolate coordinate 
system (τ',ζ') , [10]. Then, by employing Kelvin’s inversion 
theorems for the Stokes operators, given by Dassios in [11], 
we transform the problem in the equivalent one, which is now 
expressed in the prolate coordinate system (τ,ζ)  [10], with τ 
and ζ expressing the “radial” and the angular coordinates, 
respectively, with τ 1≥  and 1 ζ 1− ≤ ≤ . 

We solve the problem in the prolate coordinate system, 
where the stream function semiseparates variables [12]. Using 
reversely the Kelvin’s transformation theorems [11], we 
obtain the stream function ψ (τ',ζ')α  of the problem at hand, 
which is given in terms of the prolate coordinates as follows.  

3

α 2n 2n3
3 2 2 n=1

bψ (τ',ζ') = g (τ)G (ζ)
c τ + ζ 1

∞

−
∑ ,  (5) 

where b > 0 is the radius of the sphere of inversion, c > 0 is 
the semifocal distance and 

2 2 2 2 1
9bcUg (τ) = A G (τ) H (τ) bcUG (τ)

5
− −

 

2 4 4
6bcU+E G (τ) H (τ)

5
− , 

 

 

(6) 

2 2
2n 2n 2n n 1 n 1 n n 2n

bcUg (τ) = A G (τ) + ( w e w d )H (τ)
2 − −− −

n 1 n 1 n 1 2n 2 2n 2n+2
bcU+ w e d H (τ) + E G (τ)

2 − − − −
 

n n n 2n+2
bcU+ w d e H (τ), n 2

2
≥ ,

 

 

 

 

(7) 

where An, En, wn, en, dn are coefficients defined in [4] and Gn, 
Hn are Gegenbauer functions of the first and the second kind 
respectively [13].  

In the following figure we present streamlines assuming 
stream function values equal to 0.1, 0.05, 0.01 , depicted from 
infinity towards the surface of the inverted prolate spheroid  
respectively, using only the first term of the series.  
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Figure 2. Streamlines in the plane x2 = 0 with τ = 1,09.  

III. VELOCITY COMPONENTS, DRAG FORCE, 
DRAG COEFFICIENT 

As it is well known, see for example [9], the velocity 
components in any coordinate system of revolution 1 2(q , q , )φ , 
with radial cylindrical coordinate 1 2(q , q )ϖ = ϖ , are given by 

1

2
q

2

h
υ

q
ψ

ϖ
∂

=−
∂

, (8) 

2

1
q

1

h
υ

q
ψ

ϖ
∂

=
∂

, (9) 

where ( )1 2ψ = ψ q ,q ,φ  is the stream function and h1, h2 are 
the metric coefficients of the coordinate system. 

In the inverted prolate coordinate system the above 
relations read as 

2 2 2

2 2
b 1 ζ τ 1

'
c(τ + ζ 1)

− −
ϖ =

−
, (10) 

2 2 2
'
1 2 2 2

c(τ + ζ 1) τ 1h =
b τ ζ

− −

−
, (11) 

2 2 2
'
2 2 2 2

c(τ + ζ 1) 1 ζ
h =

b τ ζ

− −

−
. (12) 

Using the stream function (5), the tangential and the 
normal velocity components become 

' '
α α α2 2

τ'
ψ ψ ψh h ζ τυ = =

' ζ' ' ζ ζ' τ ζ'ϖ ϖ
⎛ ⎞∂ ∂ ∂∂ ∂ ⎟⎜ ⎟− − +⎜ ⎟⎜ ⎟⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

, (13) 

' '
α α α1 1

ζ'
ψ ψ ψh h ζ τυ = =

' τ' ' ζ τ' τ τ'ϖ ϖ
⎛ ⎞∂ ∂ ∂∂ ∂ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

. (14) 

Once the velocity field is known, the pressure tensor Π 
and the shear deformation tensor Δ can be also evaluated [9]. 
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Another quantity of interest is the drag force which 
expresses the resistance to the motion through a medium. 
Therefore the drag force exerted on the surface of an axially 
symmetric body [9] is defined as  

z r

rF 8πμ lim ∞
2∞

(ψ − ψ )
ϖ→

= , (15) 

where μ is the shear viscosity, ψ is the stream function, ∞ψ  is 
the asymptotic form of the stream function and ϖ  is the radial 
cylindrical coordinate. 

In the inverted prolate coordinate system it takes the form 

z r '

r '
F 8πμ lim

'
α ∞

2∞

(ψ − ψ )
ϖ→

= . (16) 

After some calculations we obtain 

2 4 2
2 22 2 2 2 2

r '( ) G (τ) G (τ) G (ζ)b A + E
' c τ 1 τ 1 1 ζ

α ∞ψ − ψ
ϖ

⎡ ⎤
⎢ ⎥=
⎢ ⎥− − −⎣ ⎦  

2n 22n 2n
2n 2n2 2 2 2

n 2

G (τ)G (τ) G (ζ)b A E
c τ 1 τ 1 1 ζ

∞
+

=

⎡ ⎤
⎢ ⎥+ +⎢ ⎥− − −⎣ ⎦

∑ , 

 

 

(17) 

Therefore 

0
z 2

0

τ 14πμb 3F bcU ln
4 τ 1c

⎡ +⎢=− ⎢ −⎣  
n 1

2n 2n
n=2

1 3 ... (2n 3)(A + E )( 1)
2 4 ... (2n)

∞
+

⎤⋅ ⋅ ⋅ − ⎥+ − ⎥⋅ ⋅ ⋅ ⎦
∑ . 

 
 
 

(18) 

The drag coefficient [9] is then defined by  
z

D 2

2F
C

U A
=

ρ
, (19) 

where Fz is the drag force, ρ is the density of the blood 
plasma, U is the fluid velocity parallel to the x3-axis in the 
positive direction and A is the characteristic area. Therefore 
the drag coefficient is 

2
0 0

D 2 3
0

8μ(τ 1) τ 13C bcU ln
4 τ 1ρU b

⎡− − +⎢= ⎢ −⎣
 

n 1
2n 2n

n=2

1 3 ... (2n 3)(A E )( 1)
2 4 ... (2n)

∞
+ ⎤⋅ ⋅ ⋅ −+ + − ⎥⋅ ⋅ ⋅ ⎦

∑ . 

 
 
 
 

(20) 

The drag coefficient using only the first term of the series 
is 

2 0
0

(2) 0
D

τ +112 τ 1 ln
τ 1

C =
Re

− −
−

, 
(21) 

where Re is the Reynolds number, or 
(2) 2 0
D 0

0

τ +1
Re C = 12 τ 1 ln

τ 1
− −

−
. (22) 

The negative sign in (22) explains the resistance on the 
fluid. Next we demonstrate the variation of the values of the 
absolute value of drag coefficient (2)

DReC  versus 0τ , where 

0τ 1≥  . 
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Figure 3. Plot of (2)
DRe C  versus 0τ .  

It is obvious that as 0τ  increases 
(2)
DRe C  reaches an 

asymptotic value. This is verified by taking the limit in 
expression (22). Indeed performing simple calculations we can 
find that  

0

(2)
Dτ

lim Re C = 24
→+∞

.  (23) 

Summarizing, in the present work we calculated the 
velocity components, the drag force and the drag coefficient 
regarding the blood plasma flow past a fixed red blood cell. 
We used the known stream function describing the creeping 
flow past an inverted prolate spheroid, in order to model the 
blood plasma flow past a RBC. Since this is given as a series 
expansion which convergence fast, we use only the first term 
of the series to acquire simpler formulas for the drag force and 
the drag coefficient. This theoretical model, describes the 
relative flow of the blood plasma with respect to a stationary 
RBC. It also provides the basis for obtaining analogous results 
concerning the relative case, where the RBC now moves 
slowly within a stationary fluid. This relative case is directly 
applicable to the sedimentation of erythrocytes and 
specifically in a clinical haematological test, namely the 
Erythrocyte Sedimentation Rate (ESR). Performing the test, 
one can measure the rate at which RBCs fall in vitro, under 
the influence of gravity. This is due to the greater density they 
have, compared with the density of the blood plasma.  
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