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Abstract—Current techniques for investigating the 
functional roles of masticatory muscles are not suited to 
explaining subject-specific biomechanical relationship 
between mandibular movements and masticatory muscle 
activities. The aims of this study were to estimate the 
muscle tensions of subject-specific masticatory muscles in 
dental occlusion through the three-dimensional 
morphologic changes (3DMCs) of the muscles, and to 
explain the subject-specific biomechanical relationship 
between the mandibular movement and the muscle 
tensions. One healthy adult subject underwent magnetic 
resonance (MR) scans of the head at mandibular rest 
position (M0) and maximum intercuspation (M1). Based 
on the two sets of MR images, the mandibular movement 
was measured by the position changes of the mental 
protuberance of the mandible and the muscle tension from 
M0 to M1 for each masticatory muscle was estimated by its 
3DMCs. The results showed the subject-specific 
biomechanical relationship between the mandibular 
movement and the muscle tensions, and the mandibular 
movement could be explained by these related muscle 
tensions anatomically and functionally. 

Keywords: Masticatory muscles, muscle tension, mandibular 
movements, three-dimensional morphologic changes, 
biomechanical relationship. 

I.  INTRODUCTION 
Masticatory muscles are classified into four groups: 

masseter muscles (MM), medial pterygoid muscles (MPM), 
lateral pterygoid muscles (LPM) and temporal muscles (TM). 
The four muscle groups work together to control the elevation 
and depression of the mandible for our daily mastication, i.e. 
the mandibular functions. The electromyographic approach 
(EMG) [1] and the biomechanical modellings [2] have been 

used for studying the relationship between the mandibular 
functions and the masticatory muscles activities. Muscle 
activities during the mandibular movements were recorded to 
correlate with the mandibular functions. Although the 
physiological activities recorded by EMG can reflect the 
muscle functional activities, how the muscles worked together 
to achieve the mandibular functions, i.e. the biomechanical 
relationship, could not be explained by the EMG activities. 
The biomechanical relationship has been suggested to be more 
important for clinical practices, such as the diagnosis and 
treatment of masticatory muscle dysfunction and 
temporomandibular joint disorder (TMJD). On other hand, the 
biomechanical modellings have been difficult to be employed 
for the subject-specific case due to the problem of directly 
measuring parameters, such as muscle tension direction and 
magnitude in vivo. However, the three-dimensional 
morphologic changes (3DMCs) of masticatory muscles during 
mandibular functional movements can be analyzed to measure 
the muscle anatomic architectural and biomechanical 
characteristics [3]. The aims of this study were to estimate the 
mandibular movement and the muscle tensions of masticatory 
muscles under dental occlusion case, and to explain the 
mandibular functions in dental occlusion by using the 
estimated masticatory muscle tensions for the subject. 

II. MATERIAL & METHOD 

A. Image Data Acquisition 
A normal adult male subject (31 years of age, without any 

dental problems in clenching and jaw-opened movements) 
underwent MR scans of the whole head with the mandible at 
the mandibular rest position (M0) and the maximum 
intercuspation position (M1), with each scan lasting five 
minutes. To ensure a stable relationship of the teeth at the M0, 
an acrylic bite prop was customized for the subject. For the 
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MR scan at the M1, the subject clenched the 
moderate intensity. The protocol (T1, TE: 5 m
slice thickness: 0.7mm) was carried out with
scanner (Signa HDx 1.5T, General Electric)
scans, the two sets of the whole-head M
registered by MedINRIA-ImageFusion softwa

B. Estimation of Masticatory Muscle Tension
Each masticatory muscle tension (active or p
when the mandible was moved from the M0
estimated by its 3DMCs in this study as Fig. 1

Figure 1. Estimation of Muscle Tensio
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respectively. For each muscle, the two models before and after 
mandibular position changed were demonstrated in the same 
coordinate system by different colors (Fig. 3-4th rows) for 
observing the morphologic changes. The morphologic changes 
of the masticatory muscles accompanied by the changes of 
mandibular position were clearly seen from these 
reconstructed muscle models, moreover the differentials of the 
morphologic changes between the left and right muscles were 
also observed.  

B. Estimation of Masticatory Muscle Tensions 
1) Validation of Recovered Correspondences:In section II, 

we described an extended 3D shape context method for 
finding the “best” corresponding points between the M0 model 
and M1 model for each muscle. To validate the recovered 
correspondences between the two models, some form of 
ground truth are required. In this study, the points were 
sampled uniformly from the muscle volume since the purpose 
of this study is to investigate the morphologic change of the 
entire muscle. Therefore the key-points such as maximal of 
curvature, inflection points or anatomical landmarks were not 
suitable for assessing the point matching algorithm. Instead, 
we investigated the qualities of the non-rigid registrations 
from the M0 to M1 models according to the recovered 
correspondences since the quality of non-rigid transformation 
is determined by the accuracy of the recovered 
correspondences. e.g an incorrect correspondence would 
misguide the thin plate spline (TPS) transformation leading to 
unacceptable results.  For each muscle, 3D TPS was employed  
to generate a simulated M1 model based on the recovered 
correspondences, and then the quality of non-rigid registration 
was assessed by comparing the morphologic similarities 
between the simulated M1 model and the original M1 model 
by using the three parameters: symmetric mean absolute 
distance (SMAD) [13], Hausdorff distance (HD) and Dice 
coefficient (spatial overlap). Table 2. shows the numbers of 

sample points determined by the volumes with different sizes. 
Table 3 shows the comparison results between the simulated 
M1 models and the original M1 models. By reducing the 
volume size for the four group muscles, the global errors in 
terms of SMAD, HD and Dice were reduced, respectively. As 
expected, the global errors of the recovered correspondences 
could be reduced when the number of sample points 
moderately increased. Since the approximation of the 
continuous muscle could be improved, meanwihle the local 
error between the locations of its recovered corresponding 
point and its physically exact corresponding point could also 
be reduced. 

2) Relationship between Mandibular Movement and 
Masticatory Muscle Tensions  
The measured mandibular movement and the muscle tensions 
estimated by K3 (Table 2) were decomposed into the three 
anatomic planes and shown in Fig. 4. In Fig. 4 a and b, the 
mandible was moved superiorly and slightly anteriorly (Left: 
D: 94º, M: 3.30mm). According to the estimated values of 
muscle tensions, this movement was caused by the three 
closing muscle groups (MM(L), MM(R), MPM(L), MPM(R), 
TM(L) and TM(R)), which produced the upward  tensions to 
make the mandible rotate about the horizontal axis as a hinge 
movement. LPM (LPM(L) and LPM(R)) during the maximum 
intercuspation were passively stretched by the condyle heads, 
and hence the LPM were considered to produce a pair of the 
passive muscle tensions, which only played a role in 
maintaining the mandibular posture. In Fig. 4 c, the mandible 
was moved superiorly and slightly to the left side (D: 82º, M: 
3.32mm). The upward movement of the mandible could be 
explained as the aforementioned hinge movement, whereas the 
slight left movement was due to the unbalanced forces on the 
left-right axis and the inferior-superior axis, i.e. the horizontal 
resultant force on the left side mandible was bigger than the 
horizontal resultant force on the right side  Moreover, although 
the muscle tensions on both sides pulled the mandible 

Table 2. Number of sample points. V: volume; K1 K2 and K3 indicate the numbers of sample points for each muscle at M0 under the same unit volume 
M0 MM MPM LPM TM 

 L R L R L R L R 
V(cm3) 53.15 55.24 15.78 15.10 17.29 15.79 98.09 100.31 

Volume=5mm3

K1 425 442 126 121 138 126 785 802 
Volume=4 mm3

K2 830 863 247 236 270 247 1533 1567 
Volume=3 mm3

K3 1969 2047 584 559 640 584 3633 3715 
 

Table 3. Comparison Results between MT and MO under different numbers of sample points 
K1  Dice SMAD HD K2 Dice SMAD HD K3 Dice SMAD HD 

MM L 86.10% 0.64 3.60  88.21% 0.60 3.23 

 

90.13% 0.52 2.54 
R 85.10% 0.65 4.32 87.5% 0.62 3.70 89.85% 0.50 3.05 

MPM L 88.00% 0.65 3.10 90.10% 0.60 2.64 92.34% 0.50 1.75 
R 86.56% 0.65 3.54 89.22% 0.61 3.06 91.61% 0.52 2.41 

LPM L 87.24% 0.65 3.87 89.22% 0.61 3.10 92.09% 0.50 2.31 
R 87.86% 0.65 3.80 90.03% 0.62 3.15 93.79% 0.50 2.94 

TM L 81.50% 0.91 5.78 85.90% 0.83 4.96 87.57% 0.75 4.46 
R 83.45% 0.84 6.84 87.60% 0.76 6.03 89.30% 0.69 5.52 
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superiorly, the vertical resultant force on th
bigger than the vertical resultant force on the
the mandible was slightly rotated to the lef
antero-posterior axis. In Fig. 4 d, the mandi
moved to the anterior and the left side. The an
was caused by the hinge movement, an
movement was related to the aforementione
the antero-posterior axis as well as the rotatio
about the vertical axis, which was due to the r
the muscle tensions on the right side pulle
anteriorly and the resultant force on the left
mandible posteriorly. 

IV. DISCUSSION 
The mandibular movement and the mast
tensions of the subject were accurately est
subject-specific biomechanical relationship
mandibular movement and the muscle 
explained. The present approach can help
biomechanics of the anatomically and funct

Figure 4. Biomechanical relationship between mandib
MM (R): right masseter muscle, MPM (L): left medial 
LPM (R): right lateral pterygoid muscle, TM (L): le
estimated magnitudes of muscle tensions which were r
magnitude of the displacement (mm). The locations of 
and c, in order to clearly see the muscle tensions of the
fact, the MPM were inserted into the medial surface of 

he right side was 
e left side. Thus, 
ft side about the 
ible was slightly 
nterior movement 
nd the leftward 
ed rotation about 
on to the left side 
resultant force of 
ed the mandible 

ft side pulled the 

ticatory muscles 
timated, and the 
p between the 

activities were 
 to explain the 
tionally complex 

masticatory system, and would 
diagnosis and treatment for mastic
Furthermore, as the results show
vertical movement for the mandib
force relations (discussed in Fig. 
findings would be helpful to study
[14], the tooth development [15] an
optimum occlusion of the subject.
apply our proposed method for 
tensions in jaw-opening and chewin
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