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Abstract— Autoimmune diseases are proven to be connected with 
the occurrence of autoantibodies in patient serum. Antinuclear 
autoantibodies (ANAs) identification can be accomplished in a 
laboratory using indirect immunofluorescence (IIF) imaging. 
ANAs are characterized by specific “visual” patterns on a 
humane epithelial cell line (HEp-2). The identification stage is 
usually done by trained and highly qualified physicians through 
visual inspection of slides using a fluorescence microscope. The 
presence of subjectivity in the identification process, the inter- 
observer variability, the increasing demand of highly specialized 
personnel, suggest that a realization of an automatic classification 
system is of great significance for the field of autoimmune 
diseases diagnosis. Moreover CAD systems can be used in a 
collaborative scheme in order to augment the physicians’ 
capabilities. In this paper a system for automatic classification of 
staining patterns on single-cell fluorescence images is proposed. 
Our method utilizes morphological features extracted from a set 
of binary images derived via multi-level thresholding of 
fluorescence images. Furthermore, a modified version of Uniform 
Local Binary Patterns descriptor is incorporated in order to 
capture local textural information. The classification is 
performed using a non-linear SVM Classifier. The proposed 
method is evaluated using a publicly available dataset, recently 
released for the purposes of HEP-2 Cells classification 
competition at ICPR 2012, achieving up to 95.9% overall 
classification accuracy. 
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I.  INTRODUCTION 
Indirect immunofluorescence (IIF) imaging is the 

recommended laboratory technique to detect autoantibodies in 
patient serum, which have been confirmed to be in connection 
with the occurrence of autoimmune diseases such as systemic 
autoimmune rheumatic diseases, primary biliary cirrhosis and 
dermatomyositis. Antinuclear autoantibodies (ANAs) in patient 
serum are detected by a specific fluorescence pattern on a 
humane epithelial cell line (HEp-2). The fluorescence patterns 
are usually manually identified by trained and highly qualified 
physicians visually inspecting the slides using a fluorescence 
microscope.  

Manual test evaluation though, commonly used in the 
laboratories, suffers from some important limitations. Firstly, 

the readings in IIF are subjected to inter-observer variability, 
limiting the reproducibility of the method used and inducing 
subjectivity to the results. Secondly, as ANA testing becomes 
more widespread used, the increasing demand for highly 
specialized personnel cannot always be satisfied. Additionally, 
the lack of standardization intensifies the limitations of human 
ability to detect and diagnose a disease during image 
interpretation, due to the non-systematic search patterns, the 
presence of noise and technical issues such as the 
photobleaching effect, which bleaches significantly the tissues 
in a few seconds. Lastly, the large amount of image data that is 
generated can make the detection of potential disease a really 
time-consuming process, which in turn increases the risk of 
oversight errors.  

Automatic procedures aiming to determine the presence of 
autoantibodies in IIF, confronts with modern trends in other 
areas of medicine, offering a solution to all the above 
limitations and enables easier, faster and more reliable tests. 
Hence, an evident medical demand is the development of a 
Computer-Aided Diagnosis (CAD) system, which may support 
the physician's decision. CAD methods have definitely been 
proven effective in other contexts as they allow pre-selection of 
the cases to be examined, enabling the physician to focus his 
attention only on relevant cases, making it easier to carry out 
mass screening campaigns. Also, serve as decision fusion 
procedures, augmenting the physicians’ capabilities and 
reducing errors. 

In this context, several approaches have been proposed in 
the literature aiming to automate individual stages or the entire 
IIF diagnostic procedure. The typical flow of such procedures 
consists of five main steps namely image acquisition, image 
segmentation, mitosis detection, fluorescence intensity 
classification and staining pattern recognition. In [5] Hiemann 
et al. proposed a method for quality evaluation of fluorescence 
images based on o set of shape and textural parameters 
extracted from the images. Soda et al. in [15] propose an 
autofocus function that can deal with photobleaching effect 
during acquisition. Segmentation of fluorescence cells in 
indirect immunofluorescence images (IIF) was performed by 
Yu-Len et al. in [18] using the similarity-based watershed 
algorithm as a marker to prevent over-segmentation, and in 
[19] using an adaptive edged- based segmentation method. 
Automatic mitotic cells recognition was addressed by Foggia et 
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al. [1] combining morphological features along with textural 
features extracted using LBPs. In [13] fluorescence intensity 
classification is performed using statistical features and the 
incorporation of decision rules along with three specialized 
classifiers (experts) trained on positive, negative and 
intermediate samples respectively.  

The problem of staining pattern recognition has been 
approached by Parner et al. [9] using automatic thresholding 
via Otsu’s algorithm in order to segment the individual cells, 
followed by texture model estimation obtained by various 
realizations of compact random sets. In [17] textural and 
statistic features are incorporated along with Self-Organizing 
Map classification scheme, in order to Classify HEp-2 cell 
Images. In the same context, Soda et al. [14] use an 
aggregation of binary classifiers operating on statistical and 
spectral textural features, also introducing a reliability measure 
of the final classification. Finally, evaluation results for IIF 
CAD systems integrating autofocus, intensity classification and 
staining pattern classification procedures have been reported in 
[4, 5, 11].  

 In the current work we present a method for HEp-2 cells 
classification based on fluorescence staining patterns, utilizing 
tools from two well-established fields of image processing i.e. 
image morphology and texture analysis. More specifically, 
morphological features extracted from binary images, derived 
via application of multiple thresholding operations on the 
fluorescence cell images, along with textural features extracted 
using a modified version of Local Binary Patterns, are 
simultaneously incorporated in order to achieve enhanced 
classification performance. The rest of this paper is organized 
as follows: In Section 2 the adopted taxonomy of fluorescence 
patterns is described. A detailed description of the incorporated 
features is given in section 3. In Section 4 the evaluation 
procedure is outlined and the corresponding experimental 
results are provided. Finally, conclusions are drawn in section 
5.  

II. TAXONOMY 
Positive HEp-2 samples may reveal different patterns of 

fluorescent staining that are relevant to diagnostic purposes. 
Although more than thirty different nuclear and cytoplasm 
patterns could be identified [16], the taxonomy adopted in the 
current work is the one followed by [12, 1] where patterns are 
classified into one of the five following groups:  

 
• Homogeneous: diffuse staining of the interphase nuclei 

and staining of the chromatin of mitotic cells. 
Numerous of these sera were shown to be positive for 

antibodies against double-stranded DNA and/or 
histones. 

• Speckled: a fine or coarse granular nuclear staining of 
the interphase cell nuclei. This basic pattern insludes 
fine to coarse nuclear staining with slight or without 
nucleolar staining and without staining of metaphase 
cell chromatin.  

• Nucleolar staining: large coarse speckled staining 
within the nucleus, less than six in number per cell 

• Cytoplasmic: fine fluorescent fibres running the length 
of the cell; it is frequently associated with other 
autoantibodies to give a mixed pattern;  

• Centromere: several discrete speckles (∼ 40−60) 
distributed throughout the interphase nuclei and 
characteristically found in the condensed nuclear 
chromatin during mitosis as a bar of closely associated 
speckles. 

Examples of fluorescence patterns from each of the above 
groups are shown in figure 1. 

III. FEATURES EXCTRACTION 
As shown in the literature [1, 17, 13] morphological and 

textural features can provide a very efficient description of the 
characteristics of fluorescence images, in terms of 
discrimination between different groups of patterns. In this 
context, we chose to utilize both types of features, in order to 
enhance the classification performance of the proposed system. 
To this purpose, two sets of features (morphological and 
textural) are extracted from each fluorescence image, the union 
of which constitutes the representative vector of the image. 

A. Morphological Features 
Every fluorescence pattern group is characterized by unique 

optical properties originating from the nature of the depicted 
cells, as described in section 2. In order to express 
appropriately these characteristics, as numerical values forming 
a representative vector, a novel set of morphological features is 
incorporated. The proposed features set is a variant of the 1D 
Boolean texture models proposed in [2] and especially the two 
dimensional extension proposed by Perner et al. in [9]. 

Initially, each cell image is converted to grayscale and a 
median filter is applied, using a 3x3 pixels window, in order to 
eliminate isolated extremities of the intensity values. Note that 
the filtered image is used as means to calculate a set of 
thresholding levels and no feature is extracted from it. To this 
purpose, the minimum and maximum intensity values of the 

Figure 1.  Examples of fluorescence staining patterns  
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filtered image are considered, and 9 equally spaced values in 
the range of intensity extremes are computed.  

Subsequently, a set of binary images ( ),TI x y  are 
constructed via application of thresholding operation to the 
initial (grayscale) image ( ),I x y , utilizing the above set of 9 
values T as threshold values. Significant amount of 
information is carried by the resulting sequence of binary 
images regarding the spatial distribution of intensities on the 
depicted staining pattern, expressed in the form of patterns of 
homogenous regions of Boolean “True” value, namely objects, 
with differentiating properties along the various threshold 
levels. Examples of the resulting binary images for various 
staining patterns are illustrated in Figure 2. In order to quantify 
this information, Connected Component Analysis is performed 
in each binary image ( ),TI x y , and the following set of 
morphological features is computed for each of them: 

1) Number of detected objects: TN . 
2) Density in Binary Image T: 
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where T
iS  is the solidity of the ith object of the thresholded 

image at level T and { }_T T T
i i iS A convex hull A= . 

It has to be noted that objects of size less than 1% of the 
mean objects’ size of each binary image, are considered as 
noise and ignored during the calculation of the above features.  

Finally, the complexity of the cell’s contour is considered 
as an additional feature. We chose to quantify the complexity 
as the difference between the cell’s contour and the perimeter 
of the equivalent circle (a circle with the same area as the cell): 

 2cell EqCirc cell cellCC P P P Aπ= − = − , (3) 

where cellP  and EqCircP  are the cell’s and the equivalent circle’s 
diameter, respectively.  

B. Textural Features 
While the above morphological features are able of 

capturing structural characteristics of the depicted staining 
patterns, the local textural information is considered to be of 
equal importance regarding the discrimination between the 
various patterns [1], as also evidenced by the experimental 

Figure 2.  Examples of the binary images resulting from multiple level thresholding for various staining patterns.  
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results shown in section IV. In order to exploit this type of 
information, we have incorporated a variation of the LBP 
textural descriptor. 

  Local Binary Patterns were originally proposed by Ojala 
et al [7] as a method for summarizing the local structure of an 
image. In the original LBPs the use of a 3x3 non-parametric 
Kernel was proposed, presenting high discriminative ability on 
texture classification problems. From this 3x3 window a binary 
word is extracted as follows: The center pixel is used as a 
threshold and intensity comparison with the 8 neighboring 
pixels is performed. Each pixel having intensity value greater 
than threshold is assigned the binary value 1, otherwise the 
binary value zero.  

Afterwards, the 8 binary values are considered as a binary 
representation of a decimal number, and a histogram of all the 
corresponding values computed across the image is calculated.   

While the 3x3 kernel, which is a radius 1 LBP operator, 
efficiently describes the local spatial textural information using 2଼=256 bin histogram as a descriptor, later in [10] it was 
observed that the largest proportion of information was 
contained in a small subset of the initial 256 local binary 
patterns. This subset is the Uniform Binary Patterns, where the 
number of transitions from 1 to 0 or backwards is limited to a 
maximum of two. This results in drastically reducing the 

overall descriptor dimensions, while maintaining the necessary 
information.  

Another way of capturing useful spatial information is the 
incorporation of LBP operators with radius greater than one 
[8]. This leads into a multiscale texture exploration. 

While uniformity and scalability are very important 
properties of LBP operators, discrimination can be further 
enhanced by taking into account the local structure of the 
image during the local pattern extraction procedure (improved 
LBPs [6]). There, instead of comparing the neighboring pixels 
of radius N {1, 2} with the central pixels’ intensity value, 
boundary points are compared with the mean intensity value of 
all neighboring pixels. 

Having considered the above, an application can be further 
benefit by incorporating a rotation invariant extension of the 
LBP operator [8]. The drawback here is the crudeness of the 
angular space quantization (especially in the radius 1 LBP 
operator) that can be somehow over passed by using a radius 2 
LBP operator, leading to a 22.5 degrees angular quantization. 
While this is a very efficient way to capture some notion of 
rotation invariance, it lacks in the expressiveness of global 
orientation. In this context, in [3] rotation invariance is 
achieved using a global “principal” orientation of texture 
images.  Although this approach establishes an appropriate 
alignment of the processed images prior to the application of 
LBP operator, often leads to suboptimal results due the 
miscalculation of principal orientation.  

In this work, we propose an alternative approach for the 
extraction of rotation invariant uniform LPBs, in order to 
express local textural characteristics of Hep-2 fluorescence 
images. Given an image, a set of 80 rotated images (4.5 
degrees intervals in the range 0o - 360o) are computed using 
bilinear interpolation. The radius 1 LBP operator is then 
applied in each image, and the histogram of the uniform 
patterns is computed. The resulted histograms, after 
normalization, are accumulated into one final descriptor. An 
overview of the procedure is illustrated in Figure 3.  

The 9 3 1 28× + =  morphological features along with the 58-
bin LBPs histogram are concatenated in order to form the 86-
dimension representative vector of the cell’s image. The 
classification is performed in the 86-dimensional feature space 
using non-linear Support Vector Machines Classifier with 
Gaussian RBF kernel. 

IV. EXPERIMENTAL EVALUATION 
In order to evaluate the performance of the proposed 

scheme for fluorescence staining pattern classification, we used 
the only publicly available dataset provided by the HEp-2 cell 
classification contest, hosted by the ICPR 2012 conference [20, 
1]. The dataset consists of 721 single-cell fluorescence images, 
and constitutes the training subset of the contest (the test set 
has not been released yet). HEp-2 images were acquired by 
means of a fluorescence microscope (40-fold magnification) 
coupled with a 50Wmercury vapor lamp and with a digital 
camera utilizing a CCD with square pixel of 6.45 µm. The 
initial images have a resolution of 1388x1038 pixels, a color 
depth of 24 bits and they are stored in BMP format. 

Figure 3.  Overview of the proposed variation of Local Binary Patterns 
Descriptor. 
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 The images were manually processed by specialists in 
order to produce single-cell images and provide ground truth 
information. Firstly, a biomedical engineer manually 
segmented the cells by the use of a tablet PC. Subsequently, 
each single-cell image was verified and annotated by a medical 
doctor specialized in immunology. Thus, the dataset contains 
the cell images, the corresponding binary masks indicating the 
exact area of the cell, and the information regarding each cell’s 
pattern and intensity. 

The performance evaluation of the proposed classification 
scheme was performed using k-fold validation procedure, 
where the dataset is randomly partitioned into k equally sized 
subsets, one of which is used as the test set and the rest k-1 
form the training set. The procedure is repeated k times with 
each of the k subsets used exactly once as the test set. The k 
results are then averaged to the final result. On each iteration, 
the non-linear SVM which is responsible for the final 
classification of the extracted features, is trained using the data 
provided by the corresponding training set.  

In order to demonstrate the discriminative ability for the 
two incorporated groups of features separately, additional 
experiments were conducted using the same validation 
procedure except that only one group of features was used each 
time in order to represent the staining patterns. The obtained 
results for the morphological features, LBPs and the fusion of 
those are illustrated in figure 4 by means of overall 
classification accuracy. The experiments were conducted using 
k in the range of 2 to 10 so as to test the generalization of the 
classification scheme. For each experimental configuration 
(combination of k and features set) 10 runs of execution were 
performed (with different random initializations) and the 
overall results were averaged. 

  The highest overall classification accuracy of 95.9% is 
achieved by exploiting both the morphological and the textural 
features. The highest classification rate achieved by the 
morphological features is 85.3% and the corresponding rate for 
the LBPs is 91.0%. As inferred by the results illustrated in 
figure 4, both types of features can be considered successful on 
extracting the necessary information able to discriminate the 
different staining patterns up to some extent. The local textural 

information though, expressed via the incorporated LPBs 
descriptor, proves to be of greater importance in terms of 
discriminative ability, compared to the structural characteristics 
captured by the morphological features. However, fusing the 
two features sets into a large representative vector, can 
significantly benefit the classification accuracy of the proposed 
scheme. This indicates that the proposed morphological and 
textural features can extract complementary information from 
the cell images, regarding the illustrated staining pattern. 

Finally, the confusion matrix for 10-fold validation using 
both morphological and textural features is illustrated in figure 
5, summarizing the distribution of misclassifications along the 
various staining patterns. Each row of the confusion matrix is 
normalized to unit sum. It is evident that the most 
indistinguishable patterns are the “homogeneous” and “fine 
speckled”, since the 4.7% of the homogeneous samples were 
classified as fine speckled, and the 5.7% of the fine speckled 
samples were classified as homogeneous. The reasoning behind 
this behavior is the fact that the optical characteristics that 
distinguish between the two patterns are inherently vague, as 
can been easily inferred by figure 2. In general though, the 
overall confusion percentages (off-diagonal elements) remain 
reasonably low. 

V. CONCLUSIONS 
In this paper we have presented an approach for automatic 

classification of staining patterns on fluorescence cell images. 
A set of morphological features, extracted from a set of binary 
images derived via multiple-level thresholding, were proposed 
in order to capture structural characteristics of the depicted 
staining patterns. Additionally, a variation of the well-known 
uniform LBPs descriptor is proposed in order to summarize the 
local textural information of each pattern. The two sets of 
features are fused into one representative vector, and a non-
linear SVM is trained in order to classify the staining patterns. 
The proposed scheme was evaluated using the only publicly 
available dataset of fluorescence cell images, achieving 95.9% 
overall classification rate. Unfortunately, the dataset was 
recently released and there are no reported results in the 
literature to compare with.  

Figure 4.  Classification performance of the various feature sets for 
variable k.

Figure 5.  Confussion Matrix for 10-fold validation procedure  using 
morphological and textural features’ fusion. Each row is normalized to 

unit sum. 
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