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Abstract—Radiologists face difficulties when read-
ing and interpreting Positron Emission Tomography
(PET) images because of the high noise level in the
raw-projection data (i.e. the sinogram). The later
may lead to erroneous diagnoses. Aiming at finding
a suitable denoising technique for PET images, in
our first work, we investigated filtering the sinogram
with a constraint curvature motion filter where we
computed the edge stopping function in terms of
edge probability under a marginal prior on the
noise free gradient. In this paper, we show that
the Chi-square is the appropriate prior for find-
ing the edge probability in the sinogram noise-free
gradient. Since the sinogram noise is uncorrelated
and follows a Poisson distribution, we then propose
an adaptive probabilistic diffusivity function where
the edge probability is computed at each pixel. We
demonstrate quantitatively and qualitatively through
simulations that the performance of the proposed
method substantially surpasses that of state-of-art
methods, both visually and in terms of statistical
measures.

Index Terms—Sinogram Filtering, Adaptive De-
noising, PET Filtering, Chi-square Distribution, Pois-
son Noise.

I. INTRODUCTION

The search for an efficient and applicable image
denoising methods is still a challenge especially
for images which often taken in poor conditions
such as medical images. Filtering techniques based
on the use of partial differential equations (PDE)
have been extensively studied since the early work
of Perona, [1] and Weickert, [6]. They applied the
well-known diffusion formula,

∂u

∂t
= ut = div(g(|∇u|)∇u) u(0) = u0 (1)

where u is the smoothed image, ut is the partial
derivative of u with respect to diffusion time t,
’div’ denotes the divergence operator and g is the

so-called edge stopping or diffusivity function.

In our previous work [12], we have proposed
and investigated a Probabilistic Curvature Motion
filter for enhancing the PET image by filtering the
PET raw data (sinogram) and the results were very
promise. The proposed method was initiated based
on (i) the curvature motion method [4], and (ii)
the probabilistic diffusivity function [3], and con-
sidering the following PET images characteristics
[12]:

1) The important features in the sinogram are
curved structures with high contrast values.
These represent the region of interest in the
reconstructed PET image, e.g. tumor.

2) The weak edges in the sinogram are the
edges that contain low contrast values.

3) The noise in the sinogram is a priori identi-
fied as a Poisson noise.

The following denoising scheme has been ap-
plied:

ut = g1(|∇u|)uvv + g2(|∇u|)uww (2)

where the second order Gauge derivatives of the
image in the (vv - along the image edges, and (ww
-across the image edges) directions are given by:

uvv =
uxxu

2
y−2uxuyuxy+uyyu

2
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(3)

In this work, we aim at better enhancing and pre-
serving the significant features of the PET images
using nonlinear curvature motion filter with an im-
proved probabilistic edge-stopping function. Con-
sidering the singoram characteristics, we propose a
probabilistic edge-stopping function based on Chi-
square prior for the ideal sinogram gradient with
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a spatially adaptive algorithm for calculating the
prior odd at each pixel. We show that this method
is better enhancing and de-noising sinogram data.

The paper is organized as follows, previous
related studies are presented in section II. Section
III describe the probablisitic diffusivity function
briefly. In scetion IV, we present how the Chi-
square is the appropriate prior for the ideal sino-
gram and the adaptive probabilistic filter is illus-
trated in section V. Finally, section VII conclude
the paper.

II. LITERATURE REVIEW

The literature contains many studies investigat-
ing a wide range of methods for enhancing PET im-
ages. In this section we present some of the related
works. Authors in [18] proposed an anisotropic
diffusion filter for enhancing and smoothing noisy
images where the nonlinear diffusion coefficients
were locally adjusted according to the directional
derivatives of the image. Authors in [16] proposed
a nonlinear PDE-based filtering methods for en-
hancing and sharpening noisy images by com-
bining backward and forward diffusion processes.
A local spatial dependant approach was used for
estimating the contrast parameter in the used dif-
fusivity function. In another work [14], authors
have proposed a new method where information
regarding the local image noise level was used to
adjust the amount of denoising strength of the non-
local filter. An adaptive nonlinear diffusion (Perona
and Malik [1]) filter based on varying the diffusion
level according to a local estimation of the im-
age noise was introduced by [15]. The diffusivity
function was weighted based on an estimate of the
noise level for each pixel. In another study [11], a
nonlinear diffusion method for filtering MR images
with varying noise levels was presented. Authors
assumed that the MR image can be modeled as a
piecewise constant (slowly varying) function and it
is corrupted by additive zero-mean Gaussian noise.

Pizurica, et al. [7] proposed a probabilistic
wavelet shrinkage approach for images denoising.
Wavelet domain denoising methods for subband-
adaptive and spatially-adapt image denoising have
been proposed. The approach of [7] was based on
the estimation of the probability that a given coef-
ficient contains a significant noise-free component
called ”signal of interest”. Pizurica, et al. found
that the spatially adaptive version of their proposed
method yielded better results than the existing
spatially adaptive ones. Our proposed diffusivity
function is inspired by the above work.

III. THE PROBABILISTIC DIFFUSIVITY
FUNCTION:

The main idea of the probabilistic diffusivity
function, which was proposed in [3], is to express
the diffusivity function as a probability that the
observed gradient presents no edge of interest
under a suitable marginal prior distribution for the
noise-free gradient histogram.

Lets first define the formula of the probabilistic
edge stopping function. Let m denote the ideal,
noise-free gradient magnitude and define the fol-
lowing two hypotheses: H0 : ”an edge element of
interest is absent” and H1 :”edge element of inter-
est is present” precisely as: H0 : m ≤ σ, and H1 :
m > σ.
The noise level σ is estimated using wavelet based
method where the noise is reconstructed from
wavelet coefficients at the finest level of detail,
as presented in [12]. The diffusivity function is
defined as:

g(x) = A(1− P (H1|x)) (4)

Where A is a normalizing constant, and it is chosen
as:A = 1/(1−P (H1|0)). The Laplacian or double
exponential prior was considered: p(Y ) = λ

2 e
−λ|y|.

In [3] it has been demonstrated that the Bayes’
rule yields P (H1|X) = µη(X)/[1+µη(X)] where
µ = P (H1)/P (H0) is the prior odds, and η(X) =
p(X|H1)/p(X|H0) is the likelihood ratio. The
diffusivity function 4 becomes:

gpr(X) = (1 + µη(0))
1

1 + µη(X)
(5)

IV. A CHI-SQUARE PRIOR FOR IDEAL
SINOGRAM GRADIENT

Most of the proposed image denoising algo-
rithms assume that the noise is normally distributed
and additive. Many images, such as those from
radiography, contain noise that satisfies a Poisson
distribution. The magnitude of Poisson noise varies
across the image, as it depends on the image
intensity. This makes removing such noise very
difficult. In this section, we show that the Chi-
square is the appropriate prior for the ideal sino-
gram gradient. First, we demonstrate that a Poisson
distribution can be approximated by a Gaussian
distribution. The probability mass function of the
Poisson distribution is given as: P (S) = mSe−m

S!
Where S is the number of occurrences of an

event and m is the expected number of occurrences
during a given interval.

In the literature [8–10], several studies presented
and discussed that the Poisson distribution ap-
proaches a Gaussian density function in the case
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of high number of counts. Moreover, Miller et
al. [8] showed that the Gaussian approximation
is surprisingly accurate, even for a fairly small
number of counts. For showing that a Poisson
distribution can be approximated by a Gaussian
distribution, we use the logarithmic function to
simplify the proof:

lnP (S) = ln

(
mSe−m

S!

)
(6)

Using Stirlings formula (for large S as we assuming
here)
S! ≈ SS .e−S

√
2πS

we have

P (S) ≈ e−(S−m)2/2m

√
2πm

(7)

In the following, we demonstrate that the gradi-
ent of Poisson random variables follows a Skellam
distribution and the Skellam distribution can be
approximated as Gaussian distribution.

Assuming that the sinogram gradient is approx-
imated by absolute difference of neighboring pixel
values on a 2-connected grid. The distribution of
the difference of two statistically independent ran-
dom variables s1 and s2, a = s1−s2, each having
Poisson distributions with different expected values
m1 and m2, is denoted as the Skellam distribution
[17], and can be given as:

PD(a;m1,m2) = e−(m1+m2)(
m1

m2
)a/2I|a|(2

√
µ1µ2)

(8)
where Ik(Z) is the modified Bessel function of the
first kind.

Lets s1 and s2 are two statistically indepen-
dent adjacent pixels in the observed sinogram
follows a Gaussian distribution with means m1

and m2, as follows: s1 ∼ Gauss(m1, σs1) and
s2 ∼ Gauss(m2, σs2). The difference between
two Poisson variables has the following properties:
i)σ2

s1s2 = σ2
s1 + σ2

s2 = 2σ2 and 2)m = ms1s2 =
ms1 − ms2 = 0. Considering that properties,
the cross-correlation and the delta function, the
approximated distribution of the sinogram gradient
can be given as Gauss(0,

√
2m).

Based on the assumption that the sinogram gra-
dient follows the Gauss(0,

√
2m) distribution, we

can show that the distribution of this gradient leads
a Chi-square distribution as follows,

∇S(i,j) ∼ Gauss(0,
√
2m)

|∇S(i,j)|√
2m

∼ Gauss(0, 1)

|∇S(i,j)|2

2m ∼ χ2

(9)

The Chi-square distribution is defined by the
following probability density function:

P (y) =
yζ/2−1.e−y/2

2ζ/2γ(ζ/2)
(10)

where γ(ζ/2) denotes the Gamma function, and
ζ is a positive integer that specifies the number of
degrees of freedom. For the noise gradient model
x = y+n, the chi-square with 2 degrees of freedom
(2 degrees because we are dealing with 2D images),
is given as:

P (y) =
1

2
.e−

1
2 |y| (11)

Based on the above, the formulas of the Bayesian
edge stopping function 4 can be reformulated con-
sidering chi-square prior instead of Laplacian prior
and n ∼ Gauss(0, 2σ2

n).

V. SPATIALLY ADAPTIVE BAYESIAN
DIFFUSIVITY FUNCTION

The probabilistic curvature motion filter with a
diffusivity function that consider global parameter
(constant threshold), presented in [12] does not
consider the images with spatially varying noise
levels such as sinograms. The diffusivity function
used in [12] has a global threshold parameter
which is related to the image noise standard-
deviation T = σn. In such formulation, if two
pixels/voxels have equal gradient magnitude, they
will give the same gpr(x) values, no matter the
noise level at these pixels.

In this work, the probabilistic diffusivity function
is improved by considering the local statistical
noise at each element. We adopt the estimator to
the local spatial context in the image following the
approach of Pizurica, et al. [7], which was applied
in the wavelet domain where here it is used in
the spatial domain. The most appropriate way to
achieve such a spatial adaptation is to estimate
the prior probability of signal presence p(H1)
adaptively for each element instead of fixing it
globally. This can be achieved by conditioning the
hypothesis H1 on a local spatial activity indicator
such as the locally averaged magnitude or the local
variance of the observed gradient.
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To estimate the probability that ”signal of inter-
est” is present at the position i, we consider a local
spatial activity indicator at each position, which is
denoted as zi.

Starting from the prior odd formula µ =
P (H1)/P (H0)), we replace the ratio of ”global”
probabilities p(H1)/p(H0) with locally adaptive
prior, p(H1|zi)/p(H0|zi), i.e. p(H1) and p(H0) are
conditioned on the local spatial indicator, xi is the
local liklihood ratio,

P (H1|zi)
P (H0|zi)

=
P (zi|H1)

P (zi|H0)
.
P (H1)

P (H0)
= ξi(zi).µ (12)

where

ξi(zi) =
P (zi|H1)

p(zi|H0)
µ =

P (H1)

P (H0)
(13)

The local spatial activity indicator zi is deffined
as the locally averaged magnitude of the observed
gradient-magnitude elements in a relatively small
square window. Considering the Bayes’ rule, the
probability that ”edge of interest” is present at
position i, (P (H1)|xi), is given as,

P (H1|xi) =
µ̂ηi(xi)

1 + µ̂ηi(xi)
=

µηi(xi)ξi(zi)

1 + µηi(xi)ξi(zi)
(14)

The spatially adaptive diffusivity function then can
be formulated as:

g(xi, zi) = A(1− P (H1|xi, zi))

g(xi, zi) = (1 + µη(0))( 1
1+µηi(xi)ξi(zi)

)
(15)

where

ηi(xi) =
P (xi|H1)

P (xi|H0)
(16)

We ensure that g(0) = 1, because the minimum
of P (H1|x) is at x = 0 and thus (1 − P (H1|x))
peaks at x = 0.

Intuitively, the proposed method consider an
’observed gradient’ at a given location as how how
probable is this location presents useful informa-
tion compared to its neighborhood, based on:
1- The likelihood ratio via ηi(xi)
2- A measurement from the local surrounding via
ξi(zi)
3- Based on the global statistical properties of the
elements (via µ).

The local spatial activity indicator (zi) is defined
as the locally averaged magnitude of the observed

gradient-magnitude elements in a relatively small
square window w(i) of a fixed size N :

zi =
1

N

∑
l∈w(i)

Ml (17)

where Ml is the gradient magnitude at positions
l ∈ w(i).

Assuming that all the elements within the
small window are equally distributed and condi-
tionally independent. With these simplifications,
the conditional probability of zi given H1 in a
square window w(i) of size N , which is denoted
as PN (zi|H1), is given by N convolutions of
P (Mi|H1) with itself, as follows

PN (zi|H1) = ((P (Mi|H1)ConvN (P (Mi|H1))
(18)

while the conditional probability PN (zi|H0) of
zi given H0 in w(i) of size N , is given by N
convolutions of P (Mi|H0) with itself,

PN (zi|H0) = ((P (Mi|H0)ConvN (P (Mi|H0))
(19)

VI. EXPERIMENTAL RESULTS

The validation of the proposed filter employs
simulated PET data of a slice of the thorax, which
allows generating multiple realizations of the noisy
data. Subsequently one can calculate bias and vari-
ance and attain a better quantifiable analysis. The
simulated PET contains three regions of interest
(tumors). We generate 100 realizations with 1x106

coincident events. The realization sinogram size
is 256x256 pixels and their spacing is 2x2 mm

pixel .
The filtered back projection (FBP) is used for
reconstructing the PET images. In our experiments
we also included datasets where additional noise
had been added to the original noise-free image.
Figure 1(a)-(b) shows the ideal noise-free sinogram
and the reconstructed PET image. A contaminated
sinogram is shown in Figure 1(c).

Two types of quantitative evaluation measures
are adopted. The first set stems from measuring the
quality of the filtering techniques whilst the second
set originates from validating the quality of the
PET reconstruction. Note that both measurement
set require the present of ground-truth data. The
former uses the noise-free image, whilst the latter
needs prior identification of the important areas by
a medical professional. In this work, we present the
results of the first method while the results of the
second one will be presented in a coming paper.
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(a) (b)

(c)
Figure 1. (a) The original -noise free- simulated sinogram
and (b) its reconstructed PET image with 3 clearly visible
spots (tumors) using (Filtered Back Projection) method.(c) An
example of one realization of a noisy sinogram

1) Denoising Quality: The idea is to verify the
quality of the denoised sinogram. The latter can
be easily achieved because of the presence of its
noise-free counterpart. In [5], several approaches
for measuring the closeness to the noise-free im-
age were analyzed. In this work, we adopt the
following measures for evaluating the quality of
the diffused sinogram: DQ1

1) The Peak Signal to Noise Ratio Ob-
viously, one sees that the higher the
PSNR, the better the quality. PSNR(t) =

10log10
Card(Ω)∑

p∈Ω

|I(p)−u(p,t)|

2) The correlation (Cmρ) between the noise-
free and the filtered image. The higher this
correlation the better the quality is. Cmρ(t) =
ρ [I, u(t)]

3) The calculated variance of the noise (NV) de-
scribes the remaining noise-level. Therefore,
it should be as small as possible. NV(t) =
σ2 [|I − u(t)|]

In this work, we are interested in comparing dif-
ferent filtering approaches: The probabilistic Cur-
vature Motion denoted as PCM [12], the Noise-
Adaptive Nonlinear Diffusion Filtering (NAF)[11],
the Constraint Curvature Motion Filter, denoted as
(CCM)[2], and the proposed method - Adaptive
Modified Probabilistic Curvature Motion, denoted
as MAPCM. The later yielded the best obtainable
result for all the 3 considered error measures ap-
plied to an optimal selected selected scale sopt
obtained using the maximum correlation method

of [5].
However, since these measure commonly do

not agree upon a single best scale, we are more
concerned with the comparison at the selected scale
topt.we use an earlier proposed optimal scale selec-
tion approach [5], where the maximum correlation
method has been adopted. The free parameters in
the CCM and NAF filter are empirically tuned to
give the best results.

Figure 2 shows examples of a filtered realiza-
tions by the proposed filter (MAPCM), PCM, NAF
and CCM-sapiro filters, respectively. Table I shows
the results of filtering 100 noisy sinograms using
the normal probabilistic curvature motion (PCM)
filter, the proposed filter (MAPCM) filter, CCM-
sapiro and NAF filters from the literature.

(a) (b)

(c) (d)

Figure 2. Filtered sinogram:(a) an example of a filtered sino-
gram by PCM filter, (b) MAPCM filter, (c)CCM and (d)NAF
filters

Method F PCM MAPCM CCM NAF

PSNR 15.08 29.73 30.84 27.4 29.1
NV 0.1087 0.0223 0.0200 0.0244 0.0261
Cmρ 0.920 0.9950 0.9955 0.9942 0.9911

Table I
DENOISING QUALITY MEASURES FOR THE NOISY SINOGRAM
(F), THE FILTERED REALIZATIONS BY PCM, MAPCM, CCM

AND NAF FILTERS THE BEST PERFORMING FILTERING
METHOD PER MEASURE IS DISPLAYED IN BOLD.

Results of the MAPCM filter demonstrate
that the Chi-square distribution is an appropriate
marginal prior for the sinogram noise-free gradient
for computing edge element of interest. Addition-
ally, The AMPCM is more effective for preserving
the edges and enhancing sinograms as it considered
the prior odd at each position. This filter has
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proven to give better PSNR results than filters from
the literature PCM, CCM and NAF as shown in
TableI. It preserves the boundaries of the curvy
shape features and wisely smoothes the regions of
interest as well as the other regions as shown in
Figure 2. The high level of Poisson noise in the
sinogram affect the performances of the CCM and
NAF filters since the diffusivity function are not
estimated well.

The drawback of CCM method is the introduc-
tion of a free parameter k, which penalizes the
edge strength since it has the same value for all
pixels. On the other hand, the main drawback of
the NAF filter, with respect to the Poisson noise,
which characterize sinogram images, is that the
diffusion produces important oscillations in the
gradient, which finally leads to a poorly smoothed
image, as shown in figure 2-d.

VII. CONCLUSION

Adaptive probabilistic curvature motion filter for
enhancing PET images is developed and discussed
in this work. The filter is applied on the 2D
sinogram pre-reconstruction. For considering the
special characteristics of the sinogram data and the
Poisson noise, a Chi-square is used as a marginal
prior for ideal sinogram gradient in the diffusiv-
ity function. We showed that this prior is more
appropriate for the sinogram noise-free gradient.
Using the adaptive probabilistic diffusion function
has proven to be an effective and suitable tool for
controlling the diffusion process in the proposed
scheme. It demonstrates better results and show
that this function is more suitable for the sinogram
data with regards to smoothing the noise level.
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