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Abstract�—This paper presents our work on the application of 
mathematical modeling and optimal control techniques in the 
modeling of tumor progression and optimal treatment planning. 
We present a pharmacokinetic-pharmacodynamic approach to 
the modeling of tumor progression in mice. Specifically, we 
describe colon cancer progression in both untreated mice as well 
as mice treated with anti-cancer agents. We also a present 
pharmacokinetic model to describe the drug kinetics in the body 
as well as toxicity models to describe the severity of side-effects. 
Lastly, we propose a promising methodology by which cancer 
progression in mice with drug-resistance can be controlled. By 
using optimal control, we demonstrate that the optimal planning 
of the frequency and magnitude of treatment breaks is key to 
cancer control in subjects with resistance and should be further 
investigated in an experimental setting, which is currently 
underway. 

Keywords�—cancer chemotherapy; mathematical modeling; 
optimal control; toxicity; drug-resistance. 

I.  INTRODUCTION 
Cancer is a leading cause of death worldwide. Many 

management options exist for cancer, including: chemotherapy, 
radiation therapy, immunotherapy, and surgery. Issues faced 
during therapy include: metastasis, drug toxicity, inter-
individual variability, and drug-resistance.  

Numerous mathematical models of cancer and healthy 
tissue growth at different levels, from gene expression to the 
phenomenological description of macroscopic tumour 
development, have been formulated. These models have 
employed concepts from several fields such as systems theory, 
signal processing and probability theory and include spatially 
structured models, physiologically structured, continuous and 
agent-based, deterministic and stochastic, phenomenological 
and mechanistic. The type of modeling methodology to be 
employed clearly depends on the process to be modelled and 
the point of view of the modeller.  

Many studies have utilized ordinary differential equations 
(ODEs), which typically involve cancer dynamics alone. 
Gompertzian growth has been widely used [1], which, unlike 
exponential growth, also considers the reduced growth rate of 
the tumor as its size increases. Other ODE models have also 
been used (e.g., proliferation quiescence models; [2,3]).  

Models of cancer treatment have also been considered: 
chemotherapy [2], immunotherapy  [4], as well as a 
combination of the above [5]. In most of this work, the 
reported findings have been based on models which, to begin 

with, were not validated with real data, thus their ability to 
provide results which can be of clinical value is yet to be 
demonstrated. Some models included pharmacokinetics [2], 
however no particular drug was examined through real data of 
effectiveness/ toxicity. One previous study [6] used mice data 
and toxicity was accounted for based on weight loss. This is an 
improved approach; nevertheless, their model ignored that in 
colon cancer, which was addressed, weight loss is not only a 
result of drugs, but also of cancer itself [7].  

Clearly, modeling and optimization work needs to account 
for drug-resistance being one of the most important reasons for 
treatment failure. Some fraction of the cancer population may 
develop drug-resistance and thus evade eradication. Despite the 
numerous mechanisms to circumvent this problem, currently 
no holistic solution exists [8]. Resistance is unavoidable and 
may lead to a halt of treatment, hence the problem is not to 
eliminate the cancerous tumor, but to prolong the patient�’s life-
expectancy [9]. Both stochastic [9,10] as well as deterministic 
models have been developed [11] to describe drug-resistance. 
In [12] tumor size is analyzed as a stochastic process and the 
probability of having no resistant cells appearing is examined. 
Two-compartment models distinguishing drug-resistant and 
sensitive cells were developed. [13] considered infinitely many 
levels of partial resistance and the corresponding deterministic 
models were formulated and analyzed by [14]. Due to their 
high dimensionality, these often only allow for a limited 
analysis. Others studied drug-resistance in a cell-cycle specific 
context [10]. Models under evolving drug-resistance with 
several killing agents acting separately have also been 
considered [9]. Most of the resistance work found in the 
literature used no real data for model development, which is 
important if the goal is to promote modeling and optimal 
control as a therapy planning tool in the clinic. 

II. MATHERMATICAL MODELING 

A. Model of cancer progression in mice-subjects 
Modeling for cancer systems requires two components. The 

first is an understanding of the system in the absence of 
treatment and the second is a description of treatment. A 
nominal understanding of how cancer progresses is necessary 
for model construction in the case of the untreated system. 
Initially, cancer cells typically proliferate in an exponential 
fashion. The simplest model designed was the exponential 
model. Assuming there is no limitation to growth, each cell 
dividing at a rate , (constant doubling time, Td = ln 2/ ), cell 
population evolution with unlimited growth is simply: 
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Gompertz-type growth models have also been proposed 
[15] to describe experimental consensus that as the tumor size 
increases, growth slows as the mass approaches a plateau 
population. This type of model is very popular amongst 
clinicians dealing with chemotherapy and radiotherapy. The 
tumor dynamics in the body as predicted by this type of models 
is depicted in Fig. 1 with model equations as in (2).  

dN (t)
dt

= 1
τg

ln[
ln[θ g /N 0]

ln[θ g /2N0]
] N (t) ln[

θ g

N (t)
] - L(N (t),C2(t))          (2a)              

where N(t): tumor volume (mm3), g: plateau size (mm3), g: 
tumor doubling time (d), and 0: initial tumor size. The first 
term represents the increase in cells due to proliferation and L 
is a function describing killing of cells due to drugs. When L is 
0, then (2) is the untreated model. L is linear in N(t), since most 
drugs kill cells by first-order kinetics, i.e. the fraction of cells 
killed by a drug of fixed concentration is not dependent upon 
tumor size. L is an affine function of drug concentration: 

L(N(t),C2(t)) =keff(C2(t) −C2thr)H(C2(t) −C2thr)N(t)
        (2b) 

where C2thr (ng ml-1) is a therapeutic threshold, keff (d ng ml-1) 
is the drug kill rate, and H is the Heaviside function: if C2(t)-
C2thr < 0, H=0, if C2(t)-C2thr  0, H=1. The drug will only be 
effective if it reaches a threshold. Below this, the drug has no 
effect on tumor but still adds to toxicity (Fig. 2). 

In Fig. 1 [16], our model results are plotted with 
experimental data from [17]. There, both untreated and treated 
mice with colon cancer were involved. One group received 5-
FU, the other received CPT-11. It can be seen that the model 
results in a good fit to untreated and treated tumor dynamics.  

B. Pharmacokinetic Modeling 
Drug administration can be described using pharmacokinetic 
models. Perhaps the most straightforward method is to assume 
that the body can be approximated as a well-mixed tank. The 
advantage of this approach is the small number of parameters 
that can often be quantitated using data. The low-order model 
is an adequate approximation for compounds with rapid 
distribution/metabolism characteristics. While this is sufficient 
for drugs whose action is based on plasma concentration, or 
whose treatment objective is PK-driven, a more detailed 
description of drug distribution is of interest when the site of 
action or toxicological effect is remote to the plasma. Near the 
other extreme in complexity lie physiologically- based (PB) 
models [18] (Fig. 3 left). Here differential 

 
Figure 1. Tumor growth plotted alongside mice data [16]. Data from untreated 
mice ( , ) and from mice that received treatment ( , ×).  

 
Figure 2. Drug concentrations in the body. 

equations are used to describe concentrations in organs where 
organs are subdivided into compartments. This is [19]: 

       
where v: vascular and t: tissue spaces of tissue i, respectively. 
Drug distribution volumes are given by Vt, C is concentration, 
and F is the blood flow rate. The number of parameters in a 
PBPK model is significantly greater than a compartmental PK 
description, and the information necessary to inform these 
parameters is often tissue-specific. When available, these data 
and model structure can provide markedly increased insight 
into the kinetics and any toxicity effects [20], however, due to 
the detailed information needed these are not commonly used. 
In between the two extremes lie low-order compartmental 
models, which we present next. A 3-compartmental 
pharmacokinetic model is given by (Fig. 3 right): 
dC1(t)

dt
= k21C2(t)

V2

V1

+ k31C3(t)
V3

V1

− (k12 + k13)C1(t) − k10C1(t) + d(t)
V1

      (5)

                               
dC2(t)

dt
= k12C1(t)

V1

V2

− k21C2(t)                                  (6)

                           
dC3(t)

dt
= k13C1(t)

V1

V3

− k31C3(t)                                      (7)

            
where C1(t), C2(t), C3(t) denote drug concentration in the 
plasma, tumor site, and other slowly diffused tissues, 
respectively, Vi denote volumes of distribution, and d is drug 
dosage. Rate constants k12,k21,k13,k31 express the link process 
between the central and the other compartments and k10 
denotes other elimination processes.  

Fig. 4 [21] depicts the concentration profile of anti-cancer 
agent docetaxel against data [22] in tumor-bearing mice 
receiving a single dose of a 20 mg kg-1 i.v. bolus. This drug 
has been shown experimentally to exhibit this type of kinetics 
[23] as opposed to other drugs (5-FU, CPT-11), which have 
been shown to exhibit kinetics best described using 2-
compartment models. The model parameters used are from 
[24] and represent the kinetics as estimated in an experiment 
involving tumor bearing mice treated with docetaxel. 

C. Toxicity modeling 
The main objective of optimal therapy planning is successful 
disease control. However, neglecting drug-related toxicity, 
might prove fatal to the patient. 

Many studies [2,3] considered toxicity, but based this on 
the magnitude of drug concentration only and no specific drug 
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Figure 3. Left: Physiologically based pharmacokinetic model. Right: 3-
compartmental pharmacokinetic model. 

 
Figure 4. Model predictions for plasma concentration with experimental data 
following i.v. bolus administration of docetaxel (20 mg kg-1). 

was involved. Because of inter�–patient and drug-variability, 
variations can occur across a population, hence average 
exposure (of a generic or even specific drug) as a metric for 
approximating toxicity may provide little utility. As a more 
quantitative and experimentally accessible metric, reductions in 
body weight are often considered. By modeling this, a 
constraint on the maximum allowable weight loss can be 
included in the treatment design algorithm. Therefore, it is 
advantageous to quantify toxicity effects on bodyweight.  

A weight loss model includes terms for weight loss due to 
toxicity but also due to cancer itself.  

 

The body weight, W(t), is the total mass of the animal which 
includes the mass of the tumor. The body weight for toxicity 
purposes, Wnet, is calculated using Wnet=W(t)- N(t). This 
corrects body weight as the tumor burden changes by removing 
the mass from that of the animal [25]). Body mass grows at a 
rate kg and decreases with the drug at a rate constant kl1. The 
effect of colon cancer on weight is accounted for by kl2 N(t).  

Fig. 5. [16] depicts body weight dynamics using the model 
above of both untreated and treated mice with colon cancer 
(data from [26]). The tumor dynamics for the same mice are 
also presented. Note the effect of the tumor on the weight of 
untreated mice. These experience a reduction in weight as the 
tumor grows, even though therapy has not been given. Certain 
types of cancer, including colon cancer may cause this weight 
loss, and the model captures this important phenomenon. 

D. Mathematical modeling with drug-resistance 
Drug-resistance is one of the major drawbacks of 
chemotherapy. Despite an increasing number of clinical studies 
as well as theoretical work on treatment interruptions as a 
means to fight resistance in HIV [27-28], these have not been 
studied extensively in cancer. In HIV, treatment breaks have 
been studied to reduce toxicity and facilitate the interplay 
between the drug-sensitive and drug-resistant HIV strains to 
control their growth. The interplay arises as a result of the 
reduced fitness of the resistant strain; this has been studied 
experimentally for the case of resistant cancer cells [20]. 
Although the two cancer populations are not in direct 
competition with each other, the fight for nutrients leads to 
dynamics that are in principle the same as those observed in 
competition. Next, we present our work on drug-resistance and 
treatment interruptions as a treatment strategy [21]. 

Experimental data from drug-resistance studies [30] were 
used in model development. Two compartments consisting of 
drug-sensitive and resistant cells were considered (TS and TR, 
respectively). Total cancer load is denoted by TT.  Once a 
sensitive cell undergoes cell division (Fig. 6), the mother cell 
dies and one of the daughters remains sensitive. The other 
changes into a resistant cell with probability SR, where 
0< SR<1. Similarly, when a resistant cell undergoes cell 
division, the mother cell dies, and one of the daughters remains 
resistant. It has been shown experimentally [31] that a resistant 
cell may mutate back into sensitive with RS. Denoting the 
inverses of the transit times of cells through the sensitive and 
resistant populations by , then:  

dTS(t)
dt

= −aTs(t) + (1 − u(t))(2 − µSR )aTS (t) + µRSaφTR (t) - r1TSTR          (9)        

dTR (t)
dt

= −aφTs(t) + (2 − µRS )aφTR (t) + (1 − u(t))µSR aTS (t) - r2TRTS       (10)

                            T T (t) = TS (t) + TR (t)                                                  (11)

 

where the first terms on the right hand sides represent mother 
cell death, the second terms describe the return flows into the 
compartments, the third terms correspond to the cross-over 
flows, and  is a relative fitness factor for the drug-resistant 
population. The model is based on [9] and a good explanation 
of the mechanisms involved can be found in that study. The 
above model includes improvements to that work. Specifically, 
it has been show n experimentally [29] that the cancer cells, 
which have undergone mutations and developed resistance to 
drugs, are less �“fit�” compared to the drug-sensitive strain in 
terms of their growth rate given ample natural resources 
(oxygen, glucose, etc). This phenomenon is well-documented 
where TR will decrease in a drug free medium. These 
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Figure 6. Mechanism of drug-resistance. 

considerations are included in the model through the fitness 
and competition constants  and r1, r2, where r1<r2. 

In the model above, drug therapy is denoted by u(t) which 
presents the drug efficacy (  [0, 1], with 0 and 1 indicating no 
treatment and full treatment, respectively). It is assumed that 
the drug has no effect on resistant cells. Drug efficacies are 
often used in mathematical modeling and are a function of the 
concentration and effectiveness of the drug. The drug efficacy 
of an anti-cancer agent is: 

u(t) = C(t)
C(t) +ω IC50

                                    (12)  

where C(t) denotes drug concentration at the tumor site and 
IC50 represents the median inhibitory concentration of the drug. 
Although IC50 can be measured by phenotype assays in vitro, it 
may not be equivalent to the IC50 in vivo [33] and the 
parameter  indicates a conversion factor between the two (  = 
1 in this work) IC50 for drug docetaxel (see Fig. 5) is 4.12 ng 
ml-1, following [34]�’s study and the concentration is predicted 
using the pharmacokinetic model in (5)-(7). The results of the 
model above are plotted against experimental data for tumor-
bearing mice developing resistance to a 25mg once weekly 
schedule of docetaxel. Fig. 7 (top) shows the results for the 
case of mouse T10. Note the response to treatment during the 
initial stages of therapy; however, it is evident that following 
the first two doses, drug-resistant tumor emerges and prevails 
over sensitive tumor resulting in total cancer load rapid growth. 
Resistance to docetaxel was also verified experimentally in that 
study. Model results replicate the response to treatment during 
initial therapy and the emergence of resistance following 
successive drug dosages. It can be seen that whereas the 
sensitive strain is controlled by drugs, the resistant one grows 
uncontrollably hence fast tumor growth. If this mouse were to 
continue receiving the same treatment schedule, cancer 
numbers would reach the maximum allowable size for mice in 
experiments short after that, hence treatment failure would 
occur (4000 m3; [34]). This is depicted in Fig. 7 (Bottom).  

The proposed model captures a number of important 
phenomena during resistance emergence and replicates data. 
One such model could be utilized in the investigation of 
treatment interruptions through optimal control techniques to 
highlight avenues of attack to cancer.  

III. OPTIMAL CONTROL 
Cancer treatment design is a field that could benefit from 

the contributions of researchers in the field of optimal control. 
Classical feedback principles in control are not directly 
applicable to most chemotherapy regimens due to the 
scheduled nature of therapy and the shortage of available 
measurements. Therefore, the control problem is generally re- 

  
cast as an optimization problem targeting a desired tumor 
volume trajectory subject to drug dosing constraints [19].  

A number of studies have examined schedules of cancer 
treatment via optimal control techniques. Various treatment 
types have been used, including chemotherapy as means to 
deplete cancer cells [2], immunotherapy as a way to boost the 
immune system, as well as a combination of the above 
treatments [5]. Most of these studies designed optimal 
treatments using models, which were neither developed nor 
validated with real data. Moreover, they did not include the 
pharmacokinetic behaviour of drugs involved, but instead 
generic drug efficacy terms were used to represent the 
percentage effectiveness of the drugs following administration. 
Some studies did make use of this behavior [2], however no 
particular drug was examined through real data of 
effectiveness/ toxicity. Lastly, many studies [3] formulated 
optimal control problems to obtain a schedule that minimizes 
the final tumor size, which while an intuitive objective, is not 
necessarily clinically relevant. 

An optimal control algorithm that can be used in treatment 
design is: 

 
where dx/dt=f(t,x,d) is the model, t ∈ [t0, tf] sets the finite 
horizon, dmin≤d≤dmax sets bounds on the maximum tolerated 
dose (MTD), and N(tf)≤Ntarget sets an end-point constraint for 
tumor size. A path-constraint in the form of N(t)≤Nmax=4,000 
mm3 prevents tumor growth in excess of a maximum allowable 
size before the mice is euthanized [34]. Similarly, 
Wnet(t)≥Wnet

min=12.8g marks the maximum weight loss as set in 
experimental protocols [35]. Weighting values a1 and a2 
penalise extended use of drugs. Unlike other studies solving for 
minimum tumor burden at a final t only, we minimize tumor 
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throughout therapy. Moreover, the path and end-point 
formulations add further constraints to the tumor and weight 
trajectories both throughout and at the end of therapy. This 
considers a more clinically relevant to therapy design.  

The results for the optimal treatment of the case study 
presented in Fig. 5 are depicted in Fig. 8. It can be seen that the 
optimal control is successful in maintaining tumor at reduced 
sizes throughout therapy, driving the final volume to desired 
levels at the end of treatment. The latter is considerably lower 
than the size obtained using the therapy in the original study 
(1270 mm3), thus the schedule controls tumor growth within 
the same horizon more efficiently. In doing this, the dosages 
administered do not exceed the MTD for drug CPT-11 and the 
inevitable weight loss is within acceptable limits. 

Next, we present optimal control work on the treatment of 
mice with resistance described earlier (Fig. 7). In a similar 
manner to the optimal control problem formulation above, the 
treatment benefit is based on the minimization of the total 
tumor size while penalizing extended use of the drug. The 
administered dosage was fixed to the Maximum Tolerated 
Dose of the drug as found experimentally [30] and treatment 
intervals were allowed to vary. The treatment levels were fixed 
during the optimization, since administration of fixed drug 
dosages over treatment intervals makes sense as it helps 
compliance from clinicians and patients. 

The results of the optimal control are depicted in Fig. 9 and 
it can be seen that the optimal management of the magnitude 
and frequency of the treatment breaks during chemotherapy is 
key in the control of the progression, hence treatment success. 
Specifically, the optimal management of the treatment breaks 
facilitates the interplay between the drug-sensitive and drug-
resistant strains, thus neither the sensitive nor the resistant 
strain grows in an uncontrollable manner, and as a result the 
total cancer load remains at all times below the maximum 
allowable size before euthanasia of the animal. In doing this, 
the dosages administered do not exceed the maximum tolerated 
doses for docetaxel administration in mice. This result may be 
explained as follows: when therapy is administered, it is clear 
that the resistant strain has an advantage over the sensitive one 
and will grow faster; the reverse is true in the absence of 
therapy due to the reduced fitness of the former in terms of its 
ability to compete for nutrients and grow, hence the sensitive 
strain will prevail in this case. Taking advantage of the 
competitive nature of the two strains so as to prevent their 
uncontrolled growth using optimized treatment interruption 
schedules has, in our opinion, great potential and should be 
explored further with experimental studies. 

IV. DISCUSSION AND CONCLUSIONS 
Despite a long history of theoretical work in modeling cancer 
and optimizing chemotherapy, its practical application has been 
arguably negligible. This stems to a great extent from the lack 
of collaboration with experimentalists/ clinicians. Most studies 
to date have based their findings on models which were never 
developed alongside data or validated and, hence, are often 
paid little attention by clinicians.  

   As a result, the primary aim in our work is to utilise, to the 
extent possible, all information and data available from clinical 

 
Figure 8. Optimal control in tumor bearing mice with colon cancer 

practice and experiments to construct mathematical models 
which represent reality more closely and which may be used in 
optimal treatment design. Specifically, herein we presented 
models & control algorithms alongside experimental data from 
mice. Each of these models is very important in an optimal 
design framework. Specifically, we presented models for: 

• Mice not receiving any therapy in order to model the cancer 
dynamics in the absence of drugs. The exponential growth of 
cancer cells during the first stages of the disease when 
nutrients are available as well as the slowing down of growth 
as the tumor size increases is shown in the model results. 

• Mice receiving CPT-11 and 5-FU. The killing effect of each 
drug was explicitly included in the model and its magnitude 
was estimated from the respective data. In both cases results 
successfully represent cancer dynamics during this period. 

•  Mice receiving treatment with docetaxel and developing 
resistance to this drug. Model results successfully predict 
drug-resistance following repeated cycles of docetaxel 
treatment. The model for drug-resistance also takes into 
consideration the reduced fitness of the drug-resistant cancer 
population in terms of its ability to compete for natural 
nutrients with the «fit» drug-sensitive strain.  

• Drug-specific pharmacokinetics and toxicity. In other 
formulations to-date, the toxicity was generally an inferred or 
generalized toxicity handled by constraining drug dosage 
rather than the measurable toxic effect validated with real 
data that may be specific to a particular drug-tumor pair. The 
use of body weight, which is most often proportional to 
toxicity in an experimental setting, to develop a toxicity 
model based on data is believed to be an improved approach. 

• Use in control algorithms with (i) dosage constraints, (ii) path 
and end�–point tumor constraints as a way to minimize the 
tumor burden, and (iii) weight loss constraints as a way to 
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Figure 9. Top: Total, drug-sensitive, and drug-restistant tumor trajectories 
with optimal control. Bottom: Optimal administration of docetaxel. 

minimize body weight loss which is a result of both toxicity 
as well as cancer itself. An optimal control case was 
presented for mice with and without drug-resistance. 

   An important result was shown. Drug-resistance is one of the 
most important reasons behind treatment failure, and a solution 
to this problem has not yet been demonstrated. The results 
show that the key to overcoming resistance and controlling 
progression is by facilitating the interplay between the drug-
sensitive and resistant cells through optimized therapy 
interruptions. We believe this approach has great potential and 
we are already exploring this through mice experiments. 
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