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Abstract— Cancer cells inefficiently produce energy 
through glycolysis even in ample oxygen, a phenomenon 
known as “aerobic glycolysis”. A characteristic of the 
rapid and incomplete catabolism of glucose is the secretion 
of lactate. Genome-scale metabolic models have been 
recently employed to describe the glycolytic phenotype of 
highly proliferating human cancer cells. Genome-scale 
models describe genotype-phenotype relations revealing 
the full extent of metabolic capabilities of genotypes under 
various environmental conditions. The importance of these 
approaches in understanding some aspects of cancer 
complexity, as well as in cancer diagnostics and 
individualized therapeutic schemes related to metabolism 
is evident. Based on previous metabolic models, we explore 
the metabolic capabilities and rerouting that occur in 
cancer metabolism when we apply a strategy that allows 
near optimal growth solution while maximizing lactate 
secretion. The simulations show that slight deviations 
around the optimal growth are sufficient for adequate 
lactate release and that glucose uptake and lactate 
secretion are correlated at high proliferation rates as it has 
been observed. Inhibition of lactate dehydrogenase-A, an 
enzyme involved in the conversion of pyruvate to lactate, 
substantially reduces lactate release. We also observe that 
activating specific reactions associated with the migration-
related PLCγ enzyme, the proliferation rate decreases. 
Furthermore, we incorporate flux constraints related to 
differentially expressed genes in Glioblastoma Multiforme 
in an attempt to construct a Glioblastoma-specific 
metabolic model and investigate its metabolic capabilities 
across different glucose uptake bounds.  

Keywords- cancer metabolism; optimal growth; genome-scale 
network; in-silico modeling; Glioblastoma Multiforme 

I.  INTRODUCTION  
Otto Warburg first observed in 1924 that cancer cells, as 

opposed to normal cells, produce a substantial amount of 
energy inefficiently metabolizing glucose via glycolysis, even 
in the presence of sufficient oxygen [1]. Normally, in 
mammalian cells glycolysis is inhibited by the presence of 
oxygen. The metabolic shift of cancer cells to aerobic 

glycolysis is characterized by significantly increased glucose 
uptake and elevated secretion of lactate [2].  

Interest in the metabolism of cancer cells has been recently 
revived [2-6]. Imaging techniques have been developed to 
detect the increased glucose uptake among other characteristics 
observed in tumors. These measurements have also been used 
clinically in diagnosis [7, 8]. R. J. De Berardinis et al. [3] have 
used 13C–nuclear magnetic resonance spectroscopy 
measurements to show that glioblastoma cells in culture 
convert as much as 90% of glucose and 60% of glutamine they 
acquire into lactate or alanine [2]. Furthermore, Jain et al. [6] 
recently investigated cellular consumption and release (CORE) 
profiles of several metabolites across NCI-60 cancer cell lines 
and showed that highly proliferating cancer cells exhibit 
important alterations in their metabolism with the common 
characteristic of incomplete catabolism of nutrients 
accompanied by secretion of by-products. Analysis of all 
monitored metabolites showed that total measured carbon 
consumption was correlated with total measured carbon 
release. 

In order to computationally describe the glycolytic 
phenotype of cancer cells, Shlomi et al. [4] utilized the 
genome-scale modeling approaches that have been successfully 
used in the past to predict the metabolic state of fast-growing 
microorganisms [9] assuming that cancer cells are under a 
selective pressure to increase their proliferation rate. In their 
work, Shlomi et al. [4] used a genome-scale human metabolic 
network reconstruction [10, 11]. A biomass reaction was 
introduced in order to describe the metabolic demands for 
biomass synthesis required for high proliferation rates. By 
accounting for cellular capacity for metabolic enzymes, their 
model captures several metabolic phenotypes observed 
experimentally during cancer development. The model has also 
been used to predict metabolic-related drug targets for cancer 
therapy [12].  

Based on the metabolic model introduced by Shlomi et al. 
[4] and by also taking into account the observed correlation 
between glucose uptake and lactate release, we investigate the 
metabolic strategy, which maximizes cellular proliferation 
followed by lactate secretion. Specifically, we investigate the 
metabolic rerouting that takes place in the generic human 
metabolic network when we attempt to maximize lactate 
secretion by allowing near optimal or suboptimal growth 
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solutions. Additionally, we explore how oxygen and glucose 
uptake, lactate secretion and cellular proliferation rate depend 
on glucose availability. In addition to the generic human cancer 
model, we also incorporate flux constraints arising from 
differentially expressed metabolic genes in Glioblastoma 
Multiform (GBM) [2, 5, 13] in order to generate a 
glioblastoma-specific metabolic model. The metabolic 
characteristics of the GBM-specific metabolic model are also 
explored across increasing growth rates. GBMs comprise the 
most common and deadly brain tumors; they are aggressive, 
highly glycoloytic and accumulate the highest levels of lactate 
in their microenvironment. 

There is a wealth of evidence supporting the 
interdependence of regulatory mechanisms interacting with the 
extracellular microenvironment and signaling pathways 
involving known oncogenes and tumor suppressors with 
metabolism and cellular proliferation [14]. Additionally, these 
cellular and sub-cellular characteristics of cancer cells both 
shape and are affected by the host tissue microenvironment 
playing an important role in tumor morphology, invasion and 
metastasis [15]. Incorporating microscopic, genotype-
phenotype characteristics into well-developed tissue-level, 
spatiotemporal models [16, 17], comprises an important next 
step and a challenge for in silico multi-scale approaches. 

II. METHODS 

A. Constraint-based modeling for cancer metabolism 
Utilizing a genome-scale metabolic network reconstruction 

of an organism, constraint-based metabolic approaches model 
the relation between the genomic information and metabolic 
activity at flux level (v) avoiding detailed enzymatic kinetics 
and reveal properties that cannot be predicted by descriptions 
of individual components [18, 19]. The core assumption of 
constraint-based models is that the system, constrained by its 
stoichiometry, S, reaches a steady state (intracellular flux 
balancing) that satisfies the physiochemical constraints under a 
given environmental condition (2). Flux Balance Analysis 
(FBA) further assumes that a cell follows an optimization 
strategy in order to accomplish cellular tasks, such as 
maximizing its growth rate (1). FBA requires an upper and a 
lower bound for the fluxes of some metabolic reactions to be 
known (3); constraints, which correspond to maximum and 
minimum rates of the reactions. Exchange reactions drive the 
uptake of compounds to the cell such as glucose and oxygen or 
release compounds from the cell such as lactate. Bounds to 
these reactions reflect substrate availability and are usually set 
to experimentally measured values. Thermodynamic 
constraints that determine the reversibility of the metabolic 
reactions and enzymatic capacity constraints are also usually 
included to place limits on the range of possible fluxes [20, 21]. 

maximize growthv                                (1) 

subject to 0Sv =                                (2) 

min maxv v v≤ ≤                    (3) 

In order to describe the metabolic capabilities of cancer 
cells, Shlomi et al. [4] utilized a genome-scale human 
metabolic network accounting for 1496 open reading frames 

(ORFs), 3742 reactions and 2766 metabolites [10, 11]. Under 
the assumption that cancer cells operate towards maximization 
of their proliferation rate, a biomass reaction that describes the 
metabolic demands for biomass synthesis was introduced in the 
metabolic model. They showed that standard FBA method 
based on stoichiometry alone was insufficient to predict the 
metabolic characteristics of cancer, but when accounting for 
cellular capacity for metabolic enzymes, several metabolic 
phenotypes observed experimentally during cancer 
development were obtained. The solvent capacity constraint 
plays a particularly important role when nutrients are in 
abundance and a global reorganization of the metabolic fluxes 
has been observed [21]. 

The flux iv  through a metabolic reaction is proportional to 

the enzyme concentration iE and the coefficient of 
proportionality can be estimated by the enzyme’s turnover 
number, 

icatk  [21, 22] as shown in (4). The mass of enzyme i 
(per mg dry weight (DW) of cells) is given by the product of its 
molecular weight iMW and the corresponding flux iv
(expressed in mmol/mgDW*h) divided by the enzyme’s 
turnover number

icatk . The solvent capacity constraint limits 
the enzymes allocated in the cell and results in metabolic flux 
constraints (5). The estimated limit on the total enzyme mass, 
C, equals to 0.078mg/mgDW [4]. 

ii cat iv k E=                                        (4) 
 

i

i i

i cat

v MW C
k

≤∑                                  (5) 

 

B. Lactate secretion metabolic strategy 
Based on the previously described metabolic model for 

cancer, we apply a strategy that allows near optimal growth 
solution while maximizing lactate secretion. The lactate 
secretion strategy is approached as a two-step optimization 
problem, similarly to the Flux Variability Analysis (FVA) 
method [23], which has been used to identify alternate optimal 
and sub-optimal metabolic states. In the first step, the method 
solves the previously described optimization problem. 
Specifically, this step maximizes the cellular growth rate (1) 
subject to flux balancing constraints (2), uptake bounds for the 
fluxes of the substrate reactions (3) and the solvent capacity 
constraint (5). The second step determines the maximal lactate 
production (6) subject to flux balancing (7), uptake bounds for 
substrate reactions (8), the solvent capacity constraint (5) and 
the constraint that the growth rate is not less than a given 
percentage, k, of the optimal growth rate (9) calculated in the 
first step. k takes values in [0, 1]. As long as lactate secretion 
rate is less than a value of tolerance, the second step is repeated 
for smaller k until a solution is found. As lactate rate is 
conversely related with cellular growth rate (data not shown), 
varying k from maximum to lower values, the model provides a 
solution that is closer to optimal growth. The value of tolerance 
is set to 0.01umol/mgDW/h. 

627



maximize lactatev                                    (6) 

subject to 0Sv =                                 (7) 

min maxv v v≤ ≤                      (8) 

optimal
growth growthv k v≥                   (9) 

C. GBM-specific metabolic model 
In order to construct a glioblastoma-specific metabolic 

model, we included constraints in the metabolic reactions of 
the model, which are associated with bibliographically reported 
differentially expressed metabolic genes in GBM [2, 5, 13]. In 
general, mRNA levels cannot accurately determine enzyme 
concentrations as inaccuracies in experiments, post-
translational modifications and other effects might occur. 
However, they can determine an upper bound on the amount of 
available enzyme [20]. Enzyme levels in turn bound the fluxes 
of the corresponding metabolic reactions through (4). 

In this work, metabolic reactions, which correspond to up-
regulated metabolic genes, are constrained to carry non-zero 
fluxes via a lower bound, whereas down-regulated genes 
constrain the corresponding reactions via an upper bound. In 
simulation the lower bound for the reactions associated to the 
up-regulated genes is set to 0.01umol/mgDW/h, while the 
upper bound for the down-regulated genes is set to 0. Similar 
results have been obtained when only the up-regulated genes 
are taken into account. 

III. RESULTS 
In this work, glucose serves as the single carbon source in 

cancer cells. Oxygen and other inorganic compounds essential 
for human cell growth including sodium, potassium, calcium, 
iron, chlorine, phosphate, sulfate and ammonia (based on the 
RPMI-1640 medium definition) are assumed to be in excess in 
the growth medium. Simulations constraining the upper bound 
of oxygen uptake show that the metabolic capabilities of cancer 
cells are not affected by oxygen availability (data not shown). 
Oxygen and glucose uptake rate, lactate secretion, growth rate 
and growth yield (growth rate divided by glucose uptake rate) 
are explored for various bounds in glucose uptake. 

Simulations are performed using the COBRA toolbox [24]. 
The glpk solver [25] is used for solving the linear programming 
problems. 

A. Near optimal metabolic predictions 
The first step of the lactate optimization strategy (see 

Methods) predicts an optimal growth rate for the cell under the 
specified constraints, which include glucose availability. 
Considering the trade-off between lactate production and 
growth rate, the method then determines the maximal lactate 
production rate subject to the constraint that the growth rate 
must be as close as possible to the optimal value. Fig. 1 shows 
that a slight deviation (99%) around the optimal growth rate is 
sufficient for adequate lactate release when glucose is abundant 
and drops up to 90% when glucose is scarce. 

 
Figure 1.  The maximal percentage of optimal growth rate achieved allowing 

the cell to by-produce sufficient lactate. 

The metabolic rerouting that is necessary for lactate 
production involves the activation of reactions related to 
mitochondrial and extracellular lactate transport as well as 
reactions related to the enzyme lactate dehydrogenase-A 
(LDHA), which mediates the conversion of pyruvate to lactate 
in the final step of glycolysis. We also observed inactivation of 
reactions related to NADH transport, HCl/NaHCO3 exchange 
and reactions implicated in aspartate metabolism. However, the 
importance of these deactivations must be further explored.  

 
Figure 2.  The metabolic rerouting. The number of differentially activated 

(red line) and deactivated (green line) reactions increases with the demand for 
higher lactate production permitting lower growth rates. 

As expected the number of the differentially activated 
metabolic reactions increases substantially when switching the 
optimization strategy from maximizing growth to maximizing 
lactate by allowing less optimal growth solutions and 
demanding for higher lactate production (Fig. 2). Flux 
Variability Analysis [23] has been also performed for these 
reactions to identify the range of their flux variation. 
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Figure 3.  Metabolic predictions across increasing glucose availability of a 
generic (blue line) and a GBM-specific cancer model (purple line), when 

incorporating the lactate strategy. (a) Predicted growth yield shows a decline 
at high growth rates. (b) Predicted oxygen consumption rate (normalized 

dividing by glucose uptake rate) is increased at high growth rates. (c) Lactate 
secretion rate versus glucose uptake rate. 

As shown in Fig. 3, the GBM-specific metabolic model and 
the generic cancer model exhibit similar metabolic 
characteristics with respect to growth yield, oxygen uptake and 
lactate secretion across increasing growth rates. Specifically, as 

the cells are shifted from lower to higher growth rates a decline 
in growth yield is observed (Fig. 3a), the oxygen consumption 
is increased (Fig. 3b) and lactate secretion is elevated (Fig. 3c) 
at high growth rates in accordance to the main characteristics 
of aerobic glycolysis [14]. Furthermore, glucose uptake rate 
and lactate secretion rate are correlated at high proliferation 
rates in consistence with the experimental observations [6].  

As can be seen in Fig. 3a, the GBM-specific model 
achieves maximal growth rate, which is less than the maximal 
growth rate of the generic model. This is explained because the 
flux constraints that we applied in the generic model in order to 
construct a GBM-specific metabolic model restrict further the 
solution space of the allowable fluxes. By definition, the 
optimal growth rate of any model derived from the generic 
through the application of additional constraints cannot be 
higher than that obtained in the generic model. 

B. LDHA inhibition affects lactate production predictions 
In normal cells, lactate dehydrogenase mediates the 

conversion of pyruvate to lactate in the final step of anaerobic 
glycolysis. The increased expression of LDHA in many 
cancers indicates the metabolic reprogramming of cancer cells 
and explains the observed lactate accumulation [14, 26]. 
LDHA is also a direct target of oncogenes such as c-Myc [27] 
and it has been shown that its inhibition inhibits tumor 
progression [28]. The simulations show (Fig. 4) that inhibiting 
LDHA related reactions, reduces lactate secretion in fast 
growing cancer cells where glucose is in abundance. The 
proliferation rate of cancer cells remains unaffected (data not 
shown), which is in accordance to experimental observations 
under normoxic conditions [26]. 

 
Figure 4.  Predicted lactate secretion rates across various bounds on LDHA 
related reactions for different glucose uptake bounds as shown in the legend. 

The predictions are based on the generic cancer model. 

 

C. PLCγ activation affects proliferation rate 
The model has also been used to show the effect of the 

enzyme PLCγ on the proliferation rate of the cell. PLCγ is a 
molecule that lies downstream of EGFR signaling and has been 
implicated in cell motility and metastasis in several cancers 
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including glioma [29] and breast cancer [30]. Setting various 
lower bounds to the fluxes of the reactions that the enzyme 
PLCγ catalyzes, we show (Fig. 5) that when glucose in not 
limited, the growth rate decreases as the corresponding fluxes 
increase, in accordance to experimental results and the general 
observation that the rate of cell proliferation is decreased 
during cell migration [30, 31]. Cell signaling pathways 
interacting with the extracellular microenvironment regulate 
metabolism [14], while cellular metabolism in turn plays an 
active role in coordinating signal transduction [32] indicating 
that attempts to link signaling with metabolism are very 
important. 

 
Figure 5.  Predicted growth rates across various bounds on PLCγ related 
reactions for different glucose uptake bounds as shown in the legend. The 

predictions are based on the generic cancer model. 

IV. DISCUSSION 
In this work, we study the metabolic capabilities of generic 

human cancer and glioblastoma-specific cells when we attempt 
to maximize lactate secretion by allowing near optimal or 
suboptimal growth solutions. Sub-optimal solutions have been 
observed to describe the metabolic capabilities of 
microorganisms under environmental stress and in the absence 
of sufficient evolutionary pressure [33] indicating that it is not 
unexpected for biological systems including cancer to show 
variability around optimal growth solutions. The simulations 
show that slight deviations (90-99%) around the optimal 
growth are sufficient for adequate lactate release and that 
glucose uptake and lactate secretion are correlated at high 
proliferation rates. The metabolic reactions differentially 
activated in lactate metabolic strategy include mitochondrial 
and extracellular lactate transport associated reactions as well 
as reactions related to lactate dehydrogenase-A enzyme 
(LDHA). The model shows that inhibiting LDHA related 
reactions reduces lactate secretion, but the proliferation rate of 
cancer cells remains unaffected. Furthermore, setting various 
lower bounds to the fluxes of the reactions that the enzyme 
PLCγ catalyzes, we show that when the corresponding fluxes 
increase, the growth rate decreases in accordance to 
experimental results and the general observation that the rate of 
cell proliferation is decreased during cell migration [30, 31].  

Genome-scale models link metabolism with cellular 
proliferation, while describing genotype-phenotype relations 
revealing the full extent of metabolic capabilities of genotypes 
under various environmental conditions. The potential 
importance of these computational approaches in 
understanding the response and adaptation of cancer cells to 
tumor microenvironment, their metabolic reprogramming and 
its dependence on signaling and gene regulation, but also their 
potential role in predicting drugs that target cancer metabolism, 
is evident. This work demonstrates a few examples towards 
this direction. 
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