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Abstract—DNA methylation events represent epigenetic heritable 
modifications that regulate gene expression by affecting 
chromatin remodeling. They are encountered more often  in CpG 
rich promoter regions, while they do not alter the DNA sequence 
itself. High-volume DNA methylation profiling methods exploit 
microarray technologies and provide a wealth of data. This data 
solicits rigorous, generic, yet ad-hoc adjusted, analytical pipelines 
for the meaningful systems-level analysis and interpretation. In 
this work, the Illumina Infinium HumanMethylation450 
BeadChip platform is utilized in an epidemiological cohort from 
Italy in an effort to correlate interesting methylation patterns 
with breast cancer predisposition. The composite computational 
framework proposed here builds upon well established, 
analytical techniques, employed in mRNA analysis. For analysis 
purposes, the log2(ratio) of the intensities of a Methylated probe 
(IMeth) versus an UnMethylated probe (IUn-Meth), quoted as M-
value, is used. Intensity based correction of the M-signal 
distribution is systematically applied, based upon Intensity-
related error measures from quality controls samples 
incorporated in each chip. Thus, batch effects are corrected, 
while probe-specific, intensity-related, error measures are 
considered too. Robust, (based on bootstrapping) statistical 
measures measuring biological variation at the probe level, are 
derived in order to propose candidate biomarkers. To this end, 
coefficient variation measurements of DNA methylation between 
controls and cases are utilized, alleviating simultaneously the 
impact of technical variation, and are juxtaposed to classical 
statistical differential analysis measures.  
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I.  INTRODUCTION  
DNA methylation of cytosine bases provides a layer of 

epigenetic modification in many eukaryotes with important 
implications for healthy and disease physiology [1]. In recent 
years, epigenomics and DNA methylation studies have thriven, 
to become a research field of critical importance for modern 
biological research [2]. The rapid progress in microarray 
technologies, enabling the interrogation of an ever larger 
numbers of DNA/RNA transcripts more efficiently and at a 
lower cost, has opened new avenues for epigenetic monitoring 
[3]. 

In general, two broad microarray-based assay categories 
have been developed to measure DNA methylations: the 

enrichment-based microarrays and the bisulfite sequencing 
microarrays [4]. Based on the latter, Illumina's Infinium 
HumanMethylation450 BeadChip is one of the newest 
microarray platforms and can detect CpG methylation changes 
in more than 480,000 cytosines distributed over the whole 
genome [5]. 

Despite the revolutionary character of the aforementioned 
microarray technology, inherent imperfections obscure the true 
biological signal by introducing measurement bias. Moreover, 
idiosyncratic particularities of the DNA methylation data 
render popular statistical tools and methodologies developed 
for transcriptomic analysis inapplicable in their current form, to 
these data [1],[4]. Therefore, preprocessing and analysis for 
targeted bisulfite sequencing microarrays remains a 
challenging, active area of ongoing research [4]. 

To date, several preprocessing and analysis approaches 
have been proposed in the literature. In particular, 
Teschendorff et al. managed to efficiently eliminate almost all 
unwanted variability by applying a multivariate regression 
model and adjusting for batch effects through the use of the 
Illumina BeadArray control probes [6]. Moreover, in the 
context of enrichment-based microarrays, Aryee et al. 
developed a generic normalization strategy, tailored to DNA 
methylation data, and an empirical Bayes percentage 
methylation estimator yielded accurate absolute methylation 
estimates [7]. Among others, they proposed within-sample and 
between-sample normalization approaches that, based on 
platform-specific, control features, can be used for loess 
regression fitting [8],[9] and subset quantile normalization [10], 
respectively. The recommended control probe loess procedure 
may be applied to other two-color tiling array DNA 
methylation protocols, while the subset quantile normalization 
is even more widely applicable as it is not tied to microarray 
data [7]. In a similar fashion, Sun et al. recommended empirical 
Bayes correction along with normalization for an effective 
batch effect removal [11]. Also, Sabbah et al. implemented 
'SMETHILLIUM', a non-parametric, spatial normalization 
method for Illumina's HumanMethylation27 BeadChip [12]. 
Finally, the specially tailored to Illumina's Infinium 
HumanMethylation450 BeadChip computational package 
'IMA' has been designed and developed in [13], in order to 
automate the exploratory analysis in epigenetic studies. 
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In the present work, we introduce a new, generic 
framework for the preprocessing and analysis of high-volume, 
DNA methylation microarray data originating from the novel, 
high-density Illumina's Infinium HumanMethylation450 
BeadChip [5]. The challenges related with the efficient 
processing of such voluminous datasets are lingering, and no 
available 'gold-standard' methods have been proposed to tackle 
the issue of technical bias. The proposed framework is applied 
to a pool of 96 samples (controls and cases) in order to 
examine retrospectively the manifestation of breast cancer. 
Here, DNA methylation is measured using the log2 ratio of the 
two channels intensities per probe (Methylated and 
UnMethylated), referred to as M-value and used widely in 
microarray-based transcriptomic analysis. Correction of the M-
signal distribution is introduced, taking into account Intensity-
related error measures. These error measures are based on the 
variation of the DNA methylation measurements of quality 
controls (QCs) that correspond to the same biological sample. 
The experimental design of the 450K methylation array is such 
that accommodates the fine screening of the methylation in 
CpG rich regions. These are probed in terms of their 
differential methylation between controls and cases. In 
addition, bootstrap based statistical estimates are derived in the 
distributions of the scaled coefficient variation of methylation 
measurements, defined as the ratio of the coefficients of 
variation of the cases to their respective controls. In this way, a 
robust measure of the true variation, compared to the technical 
one, is derived, exploiting the measured methylation in the 
QCs. Additionally, classical statistical differential analysis 
methods, including unpaired or paired tests, are employed 
between the categories of donors who remained healthy or 
manifested the disease. 

II. DATASET 
Methylation analysis based on Illumina's Infinium 

technology was first introduced with the Infinium 
HumanMethylation27 BeadChip [14]. The dataset studied here 
contains methylation data extracted using the new Illumina's 
Infinium HumanMethylation450 BeadChip, that includes 
485,577 probes (482,421 CpG sites, 3091 non-CpG sites and 
65 random SNPs). The available Italian breast cancer dataset 
encompassed 114 samples, organized in 12-sample chips. 
Ninety-six (96) samples correspond to breast cancer cases and 
controls, matched with cases in terms of age, body mass index, 
pre-post menopause. The remaining 18 samples are quality 
control samples (QCs), corresponding to the same sample 
measured in different chips which can therefore be used for 
reliable estimation of the technical variation observed in this 
dataset. At probe level, 2 channels, referring to the degree of 
unmethylation and methylation, are used to measure average 
methylation of the corresponding CpG site, and correspond to 
two channel intensities available for each probe: IMeth and IUn-

meth. Detection p-value measurements have been used to ensure 
that statistically non-significant detected signals in the chips 
are excluded from further analysis.  

III. METHODOLOGY 

A. Measure of methylation 
To date, two methods have been proposed to measure DNA 

methylation: i) Beta-value, ranging from 0 to 1, which is used 
to measure the percentage of methylation (Beta= IMeth/ (IMeth 
+IUn-meth)), and ii) M-value, where M=log2 (IMeth/IUn-Meth), also 
widely used in gene expression microarray analysis [15]. 
Although Beta-value has a direct biological interpretation, 
corresponding roughly to the percentage of a site that is 
methylated, M-value is statistically more valid as it is 
approximately homoscedastic, and is thus adopted here [15]. 

B. Intensity – based normalization 
The normalization of the M-signal distribution is 

systematically applied, taking into account the average 
intensity level of both channels I=(IMeth*IUn-Meth)1/2 and the 
QCs incorporated in each chip. Our scope here is to alleviate 
the impact of technical bias in the signal estimates. The 
normalization takes place in two successive steps: i) within-
chip and ii) across all probes. 

1) Within-chip: Available QCs (1-2 per chip) are used 
in order to calculate an error estimator in M-signals, across 
all intensity levels. Error for a certain probe type is 
estimated, considering the average M of all probe values in 
the QCs. All probes measured at a certain intensity level 
(the intensity space I is partitioned in percentiles) are 
utilized for the calculation of the error at this intensity level. 
Probe estimates for all arrays (cases, controls and QCs) are 
then updated, i.e. M-value of a probe is recalculated by 
subtracting the respective error calculated for the 
corresponding intensity level. Algorithmic steps at this 
stage are presented below:   

   Stage 1: For each chip containing at least a QC do: 

a. Identify Intensity Segments (I-S)  (percentiles) at QC 
sample (or average QCs probe values if >1 QC samples in 
the chip).  

b. For each I-S  

Find probes members of the I-S in the given QC and 
calculate the error in this I-S: 

    ErrorI-S = Average (Errork), k: number of probes in the I-S 

 Errork = Mk-M0(k) (M0(k) : average M of k probe in all           
 QCs) 

c. For each I-S, identify all j probes of QCs and other 
samples in each chip, which intensity lies in the same I-S 
percentile and update Mj values: 

  Mj_corrected_1 = Mj - ErrorI-S 

 

Whenever a chip contains no QC, then the estimation of the 
error is performed, by relating it to another chip, which 
contains at least one QC, based in the similarity of their 
intensity distributions. To this end, k-means clustering of all 
samples across chips is employed, using the average 
intensity measurements per probe. Clusters are formed 
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corresponding to groups of samples with similar I 
distributions. A chip without QCs is thus linked with 
another chip with QCs and its signal values are then 
updated using the I-S error estimates of this chip. Since a 
chip without QCs contains 12 samples, a majority voting 
scheme is applied to resolve the selection of the appropriate 
chip, based on the similarity of the incorporated samples 
after completion of  k-means clustering. 

2) Across all probes: A second normalization, per probe 
this time, is applied exploiting the standard deviation of the 
M-values across all t QCs for any probe. M-values of any 
probe across all samples are then updated, by subtracting 
the probe based error estimate. 

Stage 2: Using M-values, as updated in Stage 1, do: 

a.  For each probe p, calculate an estimator of Errorp from 
all available t QCs:  

       Errorp = std(Mp(1),Mp(2)..,Mp(t)), 

where t is the number of QCs for probe p 

 b.   Across all samples, update probe p: 

     Mp_final  =  Mp_corrected_2   =  Mp_corrected_1  -  Errorp 

 

C. Scaled coefficient variation measurements 
In order to identify probes that are reliable candidates for 

differential DNA methylation among physiological categories 
(cases vs. controls), the notion of scaled coefficient variation 
(CVscaled_p) (Eq. 1, 2) for each probe is introduced. This 
represents a robust measure of the real inter-class variability 
observed in a probe in the whole population (controls and 
cases), when compared to that observed among QCs, which 
measures solely the technical variation. The greater this 
coefficient for a probe p is, the greater the real (beyond 
technical variation) differential expression is. Thus:  

CVscaled_p= abs [ CVcontrolsUcases_p  / CVQCs_p ]          (1) 

CVsamples(1,..k)_p = std(Mp(1,..k)) / mean(M p(1,..k))            (2) 

Based on the distribution of CVscaled values across all probes, a 
z-test is applied in the CVscaled distribution, to assign a p-value 
to each CVscaled value. A higher CVscaled is related to a lower p-
value, implying more intense inter-class variability, for this 
probe. 

D. Statistical Selection 
 In order to derive statistically significant differential DNA 
methylation patterns between controls and cases at the probe 
level, apart from the typical unpaired t-test (control vs. cases), 
a paired t-test is also applied. The paired t-test is based on the 
total 47 cases-control matched pairs, defined through the use 
of additional variables (see Dataset Section). Therefore, two 
sets of p-values are computed for each probe and then are 
comparatively assessed (see Results & Discussion Section). 

E. Bootstrapping-based correction of p-values 
Bootstrapping-based correction is here applied, so as to 

immunize statistical findings against the detrimental effect of 

multiple hypothesis testing. Goal is to examine whether the p-
values obtained either from a statistical test or extracted based 
on CV measurements are indeed that extreme or they could 
represent random false selections. Thus, the p-value in the 
original p-value distribution is compared to those computed 
from a series of distributions of p-values, ranked in ascending 
order, derived by bootstrapping. The procedure is repeated and 
the number of times, where the original p-value is found less 
extreme compared to the one derived by the bootstrap 
distribution, represents the corrected p-value with respect to the 
original one. In order to incorporate into the corrected value the 
significance of the initial statistical test, we designate a 
Bayesian-type product term, that multiplies both the p-value 
estimate derived by the bootstrapping, and that of the original 
statistical test, The value extracted is next and normalized by 
the average estimate of this product for all probes. The 
algorithmic steps for this correction are presented in the 
following:  

Input: A series of m p-values (p1,..pm) and a number of 
bootstrap repetitions (nboot, ought to be a big number: 1,000, 
100,000 etc.)1 

Steps  

a. Construct nboot distributions (m elements each) by 
bootstrapping (selection and replacement) the 
original p-value distribution2. 

b. For each pi  

i. Find its position in the original distribution 
(e.g. percentile):     

                      pi_original_position  

              ii.    For each iteration k, use the kth p-values     
                     bootstrap distribution vector: 

                          Derive the p-value pi(k) of the pi_original_position    
                          percentile of the kth bootstrap distribution  
                          If pi_original_position >pi(k) increase the counter 

       iii. Correct each pi : 

                                              

 

IV. RESULTS AND DISCUSSION 
Regarding the intensity-based correction of the M-values, 

the estimation of the error across all intensity levels proved to 
be greater at lower intensity levels. This implies lower 
statistical power, which would require higher replicate 
numbers for reliable signal estimation at these levels. This was 
a consistent finding, observed in all 12-sampled chips (an 
example is illustrated in Fig. 1). Intensity-based correction of 
the M-values was followed by the calculation of the scaled 
CVscaled measurements and then statistical selection testing 
(paired and unpaired tests). 

                                                           
1 When p-values are derived, based on the CVscaled distribution, CVscaled measurements are 
also input to the algorithm.   
2When p-values are corrected, based on the CVscaled, the original CVscaled  distribution is 
bootstrapped and comparisons in b.i and b.ii steps are performed based on CVscaled 
measurements (original or bootstrapped).  

n

nbootcounterp
nbootcounterpcorrectedp

i
i

i
i ∑

=
)/(*

)/(*_
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Two sets of p-values were extracted either from the 
conventional statistical tests or the CVscaled measurements and 
were further corrected exploiting bootstrap resampling 
(nboot=100000). Regarding statistical thresholds, top 1% and 
top 5% of probes were adopted, using their corrected p-values. 
In the case of the CVscaled measurements, the top 10% 
performing probes were selected, utilizing the corresponding 
p_corrected values. As it can be seen in Figure 2, where the 
histogram of the CVscaled measurements is illustrated, the 
impact of the various normalization steps of our composite 
framework is such that median of the CVscaled distribution is 
0.9964 (very close to 1). This supports the plausibility of the 
processing steps applied, as a CVscaled measurement of 1, 
implies that the variation observed between cases and controls 
is the same with that observed in QCs (technical variation). 
Extrapolating, one can conclude that the top 50% probes in 
this distribution, demonstrate higher variation than the 
technical one, something that is strengthening when narrowing 
the selection threshold. Furthermore, if coupled with another 
statistical selection method (e.g. statistical selection using 
paired or un-paired t-test), it can filter out unreliable probes in 
terms of signal quality, retaining sound candidates as regards 
their true differential DNA methylation expression. In this 
study, this strategy was adopted, resulting in selected probe 
subsets corresponding to CpG sites, that were qualified by 
both approaches (Table I). 

In Table I, the results of the un-paired and the paired t-test 
selection are juxtaposed, with the latter method intensifying 
the significance effect in the selection process, namely, lower 
p-value estimates for the same selection threshold (top1% or 
top 5%). The top 1% criterion in paired t-test was combined 
with the CVscaled > 1 criterion, in order to select a robust subset 
of CpG sites that are both significantly differentially 
methylated and immunized against technical variation. Both 
criteria provided a subset of 2398 CpG sites (Table I, Column 
1) corresponding, according to the Illumina's Infinium 
HumanMethylation450 BeadChip annotation, to 1717 unique 
UCSC gene ids. 

 
 
 
 

TABLE I.  NUMBER OF SELECTED PROBES PER STATISTICAL METHODS 
ALTERANTIVE AND THEIR INTERSECTIONS 

Statistical Method 1 
and thresholds 

Statistical Method 2 
and thresholds 

Common 
probes by 

Methods 1 &2 
Un-paired t-test, top 
5% (24279 in total, 
p_corrected ≤ 0.0515) 

Paired t-test, top 5% 
(24279 in total, 
p_corrected ≤ 0.0401) 

16828 

Un-paired t-test, top 
1% (4856 in total, 
p_corrected ≤ 0.0132) 

Paired t-test, top 1% 
(4856 in total, 
p_corrected ≤ 0.0063) 

3067 

Un-paired t-test, top 
1% (4856 in total, 
p_corrected ≤ 0.0132) 

CVscaled  >  1 (240499 in 
tolal) 2305 

Paired t-test, top 1% 
(4856 in total, 
p_corrected ≤ 0.0063) 

CVscaled  > 1 (240499 in 
tolal) 2398 

Un-paired t-test, top 
1% (4856 in total, 
p_corrected ≤ 0.0132) 

CVscaled, top 10% (48558 
in total, p_corrected ≤ 
0.0815, most significant 
p_corrected corresponds 
to CVscaled=1.5212) 

483 

Paired t-test, top 1% 
(4856 in total, 
p_corrected ≤ 0.0063) 

CVscaled, top 10% (48558 
in total, p_corrected ≤ 
0.0815, most significant 
p_corrected corresponds 
to CVscaled=1.5212) 

478 

 
In order to better understand the molecular mechanisms 

implicated in the promotion of breast cancer, pathway analysis 
was performed. This was done through StRAnGER web 
application [16], which performs functional analysis in high-
throughput genomic datasets, starting from a list of significant 
molecular targets (transcripts, genes, proteins, etc). The 
disease is allegedly linked with aberrant epigenomic, 
regulatory functions, as a result of chromatin remodeling, due 
to DNA methylation events. In StRAnGER, established 
statistical tests are coupled with bootstrapping, thus enabling 
the derivation of a final population of statistically significant 
ontological terms, that comprise a set of over-represented 
terms, compared to all other terms of the ontology utilized. 
The list of 1717 unique gene ids yielded 187 over-represented 
GO terms for the default settings (hypergeometrc test p≤0.05, 
10000 bootstrap iterations), the most significant of which 
(p≤10-5) are presented in Table II. The cellular processes 
which CpG sites present a pronounced differential methylation 

 
Figure 1.  M-value error estimator acrosss average intensity levels for 

one of the available 12-sample chips.  

 
Figure 2. Histogram of all CVscaled measurements: [mean 

median]=[1.2582 0.9964].  
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pattern, are related mainly with developmental and 
transcriptional regulatory actions. This is line with the fact that 
chromatin remodeling represents a critical regulatory function, 
as well as the fact that gradual deviation of a cell to cancerous 
phenotype, necessitates aberrant operation of cellular 
developmental and morphological programs and circuitries. 
The fact that among such programs, neural specific 
developmental processes are quoted, implies that upon the 
carcinogenic transformation, the cells lose their differentiation 
potential and they regain their transformative pluripotency.  

The modular methodological framework presented here, 
including the 2-stepped intensity-based normalization of the M 
values and the exploitation of the estimates of the scaled 
coefficients of variation of the probe values, is quite generic. 
Whenever the experimental design is such as to afford quality 
controls to enable derivation of reliable technical variation 
measures, the methodology proposed here is straightforward 
applicable even for the case of mRNA data analysis as well.  
As future work, already in the phase of implementation, the 
development of a web pipeline is envisaged to provide access 
to the algorithmic framework presented, through the setup of 
appropriate interfaces and the accommodation of various 
experimental platforms.  

V. CONCLUSIONS 
In this paper, a composite computational framework for the 

analysis of high volume (Illumina technological platform) 
methylation data was presented. An intensity-based 
normalization method of M-values was proposed, while a 
scaled coefficient variation ratio term was introduced so as to 
tackle the issue of the detrimental role of technical bias, when 
assessing real inter-class variability (controls vs. cases). The 
methods proposed here exploit the technical controls available 
in the specific dataset. They are, however, quite generic to 
accommodate other designs, even such that dispense with 
quality controls. As a third step, a bootstrap based p-value 
correction algorithm was applied either to the statistical 
selection results or the scaled coefficient variation 
measurements, to enhance the reliability of the statistical values 
derived. The framework was applied to an italian breast cancer 
dataset and the preliminary results are promising and 
convincing, as it can be surmised from their functional 
evaluation. The selected CpG sites were further subjected to a 
statistical enrichment pathway analysis, revealing cellular 
functions, congruent either with established aspects of the 
breast cancer physiology or those of epigenomic regulation. 
Moreover, they have already provided a long pile of 
candidates, which are gradually deepening our understanding 
about the complexity of the carcinogenic process. They also 
represent possible targets for further experimentation or 
systems level interpretation. The composite framework 
proposed here, is generic enough so as to be extended to or 
accommodate other tangible high-throughput analysis tasks as 
those of various microarray technologies. 
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TABLE II.  OVER-REPRESENTED GO TERMS BASED ON GENES CORRESPONDING TO THE 2,398 SELECTED CPG SITES 

GO Term GO Annotation/Gene Description GO Category OT p-value Enrichment 

GO:0005515 protein binding F 1.10E-09 667/7070 

GO:0007507 heart development P 3.00E-08 34/162 

GO:0007156 homophilic cell adhesion P 8.86E-08 28/125 

GO:0045995 regulation of embryonic development P 1.34E-07 6/8 

GO:0030528 transcription regulator activity F 2.24E-07 67/457 

GO:0015020 glucuronosyltransferase activity F 3.71E-07 10/23 

GO:0007411 axon guidance P 3.88E-07 23/98 

GO:0042613 MHC class II protein complex C 7.59E-07 9/20 

GO:0043565 sequence-specific DNA binding F 8.10E-07 82/616 

GO:0045165 cell fate commitment P 8.81E-07 14/45 

GO:0045202 synapse C 9.30E-07 44/268 

GO:0005244 voltage-gated ion channel activity F 1.39E-06 29/149 

GO:0046872 metal ion binding F 1.68E-06 281/2780 

GO:0007399 nervous system development P 1.85E-06 58/400 

GO:0045944 positive regulation of transcription from RNA 
polymerase II promoter P 2.10E-06 55/374 

GO:0007275 multicellular organismal development P 2.14E-06 111/923 

GO:0021513 spinal cord dorsal/ventral patterning P 2.94E-06 4/5 

GO:0000122 negative regulation of transcription from RNA 
polymerase II promoter P 3.17E-06 41/254 

GO:0007155 cell adhesion P 3.58E-06 73/551 

GO:0045596 negative regulation of cell differentiation P 4.08E-06 10/28 

GO:0016020 membrane C 6.16E-06 425/4513 

GO:0048646 anatomical structure formation involved in 
morphogenesis P 8.29E-06 8/20 

GO:0030900 forebrain development P 9.10E-06 16/66 

OT p-values correspond to the p-value yielded by hypergeometric test. The enrichment score equals to the number of times a GO terms appears due to differentially methylated CpG sites and corresponding gene, 
divided by the number of times the GO terms appears due to all genes in the human background annotation  available to the Stranger platform [16]. GO Category may correspond to molecular function (F), biological 

process (P) cellular component (C).  
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