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Abstract. This work investigates the scalability of Probabilistic Neural Net-
works via parallelization and localization, and a chain gradient tuning. Since 
PNN model is inherently parallel three common parallel approaches are studied 
here, namely data parallel, neuron parallel and pipelining.  Localization me-
thods via clustering algorithms are utilized to reduce the hidden layer size of 
PNNs. A problem of localization may be present in the case of multi-class data. 
In this paper we propose two simple fast approximate solutions. The first is us-
ing sigma smoothing parameters obtained from the parallel PNN initial training 
directly to clustering. In this case a substantial reduction of neurons is achieved 
without significant loss of recognition accuracy. The second is an effort for an 
additional tuning. Via confidence outputs we employ a chain training approach 
to tune for the best possible PNN architecture. 
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1 Introduction 

Data mining tries to unlock and exploit the hidden patterns in databases [1]. Probabil-
istic Neural Networks (PNN) [2] are known intelligence tools for classification that 
derive knowledge directly from data and represent it in the form of simple well under-
stood Bayesian models, which are most suitable for data mining applications that also 
need confidence levels. Bayesian classifier methods represent a powerful class of 
techniques to data mining, as they can in a strict mathematical sense to work under 
uncertainty. However the PNN hidden neuron size is usually of the order of the whole 
dataset size and the PNN operation is slow and demanding in memory and CPU re-
sources. Thus for large scale systems and datasets the PNN usage is hindered. This 
encourages more research into the scalability of these techniques. Hence during the 
last five years, various works have been presented for mapping Probabilistic Neural 
Network in parallel processing systems, such as parallel PNN in Beowulf Clusters [3], 
in Grid mining with Map/Reduce [4], and in Graphic Processing Units [5]. All these 
works mainly focus on splitting the data-neuron matrix to speed up the slow execution 
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times due to PNNs quadratic computational complexity, and in this way demonstrate 
that PNNs can be efficiently parallelized.  

Yet the quadratic complexity of the original problem remains since Parallelism is 
only one path towards speedups. While run time can be reduced by parallelism, the 
computational complexity can be reduced by localization techniques which need 
fewer locally important neurons, to sum up for the probability distribution functions 
estimation. Use fewer units in PNN pattern layer but try to place them at optimal 
places. Like previous works clustering algorithms are also considered here to reduce 
the hidden layer size of PNNs.  

A problem of such localization may be present in the case of multi-class data. In 
principle there exist no unsupervised algorithm that can sample by clustering the data 
points inside each class and select the best possible representative center points from 
every class such as a global accuracy criterion is simultaneously been satisfied. This 
problem is an extension of the well known k-centers problem and is NP hard [19]. In 
this paper we propose two simple fast approximate solutions for the above mentioned 
problem. The first is using sigma smoothing parameters obtained from the parallel 
PNN initial training directly to clustering. In this way a substantial reduction of neu-
rons is achieved with negligible losses of classification performance. The second is an 
effort for an additional tuning. Via confidence outputs we employ a chain training ap-
proach to tune and test for the best possible PNN architecture. Details and experimen-
tal results from all methods are presented next. 

2 PNN Architecture and Parallelization Mappings 

The Probabilistic Neural Network [2-5] has four layers, namely input, pattern, sum-
mation and output. There are M classes in the output layer and each has Nm pattern 
neurons in the pattern layer, and a single Gm(),  summation neuron in the summation 
layer. The d input layer neurons are the data features. The pattern layer is where train 
patterns are loaded and divided in M groups, one for each class. For an unknown 
sample X, the pattern neuron i of group m compute a Gaussian kernel of the form: 
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where Χm,i is the center of the Parzen kernel and sigma σ is the smoothing parameter 
(the width), that defines the range of each receptive field. The summation layer com-
putes the conditional density functions by sum up the previous densities in 
Gm(X)=(1/Nm)ΣFm,i(X), and finally the output layer classifies the unknown X in class 
Cm that have maximum Gm(X)·h(Cm), where h(Cm) is the class prior. The conditional 
probability for class Cm, can give also the confidence levels of this class and it is 
Conf(Cm|X)= Gm(X)·h(Cm)/( ΣGm(X)·h(Cm)). A PNN with a single sigma parameter 
called homoscedastic, while the multi-sigma PNN called heteroscedastic. The norma-
lization factor in the denominator of confidence (the prior of X) is the sum of all nu-
merators for all categories Cm. 
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The main disadvantage of PNN network is that it has one hidden neuron for each 
training sample and thus requires more computational resources during execution than 
other models. On a serial machine, O(n) cost is required to classify a single input.  

Exploitation of parallel mappings in Neural Networks can be achieved in many dif-
ferent levels from coarse grained to fine grained. The first, the session parallelism 
level (also called inter model parallelism in parallel data mining) places a different 
training model session to each processor. The next, the data parallelism, simultane-
ously learns in different training examples within the same train model session. The 
layer parallelism use concurrent computation for different layers. The neuron parallel-
ism, use the same model and split the neurons to different processors. These last three 
levels also belong to intra model parallelism. A taxonomy review is in [6] and general 
guidelines on breaking any NN structure are in [7]. If the algorithm permits it, one can 
minimize point-to-point communication by pipelining the neuron calculations. Be-
yond selecting a representative training sample, PNN training phase is essentially a 
model selection procedure for the definition of sigma parameters and pattern neurons. 

In PNN data Parallelism in Master/Worker architecture the Master node sends to 
all Workers the same copy of Neural Network, after that Master partition the data set 
and send a different partition to a different processor. Then for each epoch (a pass 
through all local data) each Worker independently process its local test set, exchanges 
its weight updates with other nodes, applies the weight updates to its copy of Neural 
Network, and computes local error rate and determines if local training is complete. 
The Search for best sigma parameters can be done by several repetitions of an epoch. 
This approach ensures that all parameter values required during the training phase, are 
locally available, decreasing the communication between the nodes and the synchro-
nization of the parallel algorithm. The synchronization appears in the end of an epoch.  

In PNN neuron parallelism the neurons are distributed in the processors. An algo-
rithm of neuron parallelism in Master/Worker architecture is the following: 1) Master 
split data set into train and test (uses stratified sampling) and partition and distribute 
train set instances across workers to set up the local distributed pattern neurons. 2) 
Each Worker uses its local train set for the local pattern neurons. 3) Master broadcast 
the same train parameters to all workers. 4) For each test set instance Master sequen-
tially Broadcast an instance X (or a batch B) of test set data to all workers, all workers 
compute local distances, kernels and send back partial sums for each class, Master 
reduce all partial sums for each class from all workers, and find the class of X. 

In the PNN pipelined neuron parallelism, the communication time between proces-
sors is minimised to point-to-point, allowing each one node to receive-send messages 
with only his 2 neighbours (previous - next). Each machine keeps a partition of neu-
rons, as in the PNN Neuron Parallel. In batches B, the evaluation points are loaded in 
the first node. For each batch, is calculated a list of partial sums of the class condi-
tional probabilities for each class. The list and batch together are propagated to the 
next node in the pipeline that makes the same operation on them. A label of class is 
finally set in the ending node. This requires only point-to-point communication. 

Model selection methods like leave-one-out cross-validation are often used in PNN 
training and evaluation for selecting the best sigma parameters. This is the one ap-
proach we use in the parallel implementations.  
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3 PNN Localization Problem and k-Centers Sampling 

While PNN run time can be reduced by parallelism, the computational complexity can 
be reduced by localization techniques which need fewer locally important kernels, or 
neurons, to sum up for the probability density functions estimation. Localization tries 
to obey the parsimonious principle. The smaller and simpler is the better. All localiza-
tion techniques require some additional regional information, specifically a list of k 
local points which are close to any given point x. Various clustering or sampling ap-
proaches are proposed to reduce neurons [8] for PNNs like LVQ in [9], k-means clus-
tering [10], hierarchical clustering [11], the DDA algorithm in [12], Gaussian 
ARTMAP in [13], global k-means with Expectation–Maximization in [14] and k-
medoids in [15]. After finding “representative” vectors for each class every sigma 
parameter depends on the clusters. The modified density equation for the PNN is: 

 ⎥
⎦

⎤
⎢
⎣

⎡ −−
∏

= ∑∑
∑ ==

==

d

i
ik

m
ikiNm

k m
ik

d
i

m
k

Nm

k

m
k

m

XxN

N
cxF

1 2

2

1
1

1
2

)(
exp

1
)|(

σσ
 (2) 

where m
kN  is the number of initial samples that covered from the kth cluster in class 

m, while m
ikσ   and m

ikX   are the smoothing parameter and the mean (or the medoid) in 
ith dimension for the cluster kth in class m, respectively. However the cluster based 
sigma parameters estimation tends to deteriorate the classification performance and 
optimization of sigma parameters, as well as of the network weights, is necessary. 

In this work we compare many existing samplers like Affinity Propagation (AP) 
[16], k-Medoids (KM) [1], Subtractive Clustering (SC) [17] and Farthest Point clus-
tering (FPC) [18] to sample important points inside classes.  

A problem of such localization may be evident in the case of multi-class data. An 
efficient algorithm must select the best samples from a class and doing this with re-
spect to the best samples from the other classes. Yet this problem is a multi-class 
extension of the well known k-centers problem or k median objective and is NP hard 
[19]. In this paper we propose two simple fast approximate solutions to work around 
the problem. The first we will demonstrate is using the sigma smoothing parameters 
obtained from the parallel PNN initial training directly to Subtractive Clustering. In 
this way a substantial reduction is achieved without significant loss of recognition 
accuracy. The second is an effort for chain training for an additional tuning.  

Affinity Propagation and k-Medoids are accurate but very slow and not incre-
mental in the sense that the next cluster point is not dependent than the previous. They 
are included for comparison only. We parallelise Subtractive clustering and Farthest 
Point clustering (FPC) as they are the only incremental, and fast and more suitable for 
large scaling. Extensive details will be presented elsewhere. Note that FPC needs to 
predefine the number of centers while Subtractive Clustering not. Nevertheless, to 
select sufficiently the best centers SC requires a training phase to find a suitable 
sigma parameter. Fortunately in this work we obtain such a sigma parameter already 
from the previously supervised parallel PNN training and propose here to use it. 
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4 Tuning by Chain Gradient Training Paradigm 

Using sigmas from PNN training in the SC clustering procedure as proposed in the 
previous chapter may be efficient enough. Though in the localized version of PNN 
there is no generic method for selecting the best number of representative points from 
every class population in all cases. If needed, chain gradient training approach can 
provide additional tuning to test for the best possible tuned PNN architecture. First by 
using incremental clustering algorithms like subtractive clustering one can potentially 
sample most possible representative points from every class in an ordered fashion. 
Then the method gradually reduces the neuron size, equally from every class, and 
monitors an average ‘gradient’ of confidence levels from a whole inter-connected 
chain of network solutions. In localized PNN case this tuning is not meant for classi-
fication performance improvement, but rather for an additional reduction of neuron 
size without affecting its current performance. 

Recall now that PNN is a data model and a data descriptor and also produce confi-
dence levels. Let us suppose that a chain of two PNN instances namely A and B dif-
ferent only in the number of hidden neurons and a evaluation set ES is present.  

Initially PNN(A) classifies its own A points to produce A-A confidence measure. 
PNN(B) classifies its own B points to produce B-B measure. Then PNN(A) classifies 
B points to produce A-B measure and PNN(B) classifies A points to produce B-A 
measure. In the third step PNN(A) classifies evaluation set ES to produce A-ES 
measure and PNN(B) classifies ES to produce B-ES measure. Finally, ES set classi-
fies A and B patterns. The first two are internal measures, the next two are local and 
the last four are external. A schematic representation is given in fig. 1. 

PNN(A) PNN(B)

A-B

B-BA-A

B-A

ES ES

A-ES
B-ES

 

Fig. 1. A chain of two Probabilistic Neural Networks A and B different in the number of pat-
terns, inter-connected with each other via confidence-based measures, indicated by arrows 

One can have a sequence of several PNNs different in the number k of hidden neu-
rons only. This chain training tuning scheme must be robust against oscillating local 
minima. The representative sampled points from every class, in an ordered fashion, 
are loaded to the hidden layer. If the hidden neuron size is gradually increased then 
we expect the chain global measure to soon reach a plateau. Confidence levels pro-
duced by the output neurons must progressively be increased for correctly classified 
patterns and be decreased for the falsely classified patterns. An efficient measure that 
can be used, is the (1+ sum of confidences for falsely classified patterns) / (1+ sum of 
confidences for correctly classified patterns) ratio. The next paragraphs present some 
experimental results. 
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5 Experimental Results  

The experimental results for PNN data parallel, PNN neuron parallel and PNN neuron 
pipelined simulations are determined for 1..2..4.. 6..8 .. 10.. 12.. 14.. 16..24 machines. 
The speedup is S / P, where S the sequential run time in a single processor and P the 
time that simulates the network in parallel. All PNN Neural Network implementations 
are written in C using MPI library. PNN-CV train by cross-validation and PNN-SC 
with Subtractive Clustering are included. 
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Fig. 2. (A) PNN Data Parallel, speed ups for data sizes of 10.000, 50.000 and 100.000 points, 
(B) PNN Neuron Parallel speedups respectively for two batch sizes B 

In fig.2A for PNN data parallel with 10.000 points a linear speedup is observed up 
to 8 processors and when the size of problem is increased to 50.000 and 100.000 
points we observe linear speedup up to 12 processors. In Fig. 2B for neuron parallel-
ism results it appears a sub-linear speedup (9/12) up to 12 processors. This divergence 
is improved evidently when the size of problem is increased to 50.000 and 100.000 
points and when the number of points in the batch increasing from 20 to 500. 
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Fig. 3. (A) PNN neuron Pipelined speedups for two sets of 10.000, 50.000 and 100.000 points 
respectively for two batch sizes B, where one observes an impressive linear acceleration up to 
24 processors. (B) The parallel programming model Master/Worker + Pipeline.  

It is clearly show in fig. 3A for Pipelined calculations of 50.000 and 100.000 points 
an impressive linear speedup (24/24) that it is achieved up to all 24 processors we 
have tried. Results of PNN neuron pipelined are the best of all the previous methods. 
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For each network we compute error on the validation set. The network with the 
highest sum of confidences is then picked as one with the best generalization ability. 

As standard we use several benchmark datasets downloaded from UCI ML Reposi-
tory [20]. In table 1 average classification results are presented after 20 runs (10 with 
50% train set and 10 with 80% train set) of each algorithm. The 1-NN is the one 
Nearest Neighbour rule, parallel PNN-CV is standard PNN with cross-validation, 
parallel PNN-FPC is localized PNN with Farthest point clustering, in where S means 
a single-sigma parameter used in equation 2, M means multi-sigma as a max distance 
from center and V means using variances and equation 2. PNN-AP is localized PNN 
with Affinity Propagation, PNN-KM is PNN with k-medoids. The best results are 
obtained with PNN-SC localized via the parallel Subtractive Clustering algorithm in 
which we use the same single sigma parameter founded by PNN-CV. 

Table 1. Classification rates on the cross-validated test set for several benchmark datasets 

Database size Clas-
ses 

1-
NN  

PNN-CV PNN-FPC PNN
-AP 

PNN 
-KM 

PNN
-SC 

S M V S S S 
Iris 150 3 96 97 (σ=0.10) 93 95 92 96 96 97 
Wine 178 3 94 95 (σ=0.22) 89 93 93 93 93 95 
Wisconsin 683 2 97.5 98.5 (σ=0.25) 98 98 98 98 98 98.5 
Yeast 1484 10 51 56  (σ=0.18) 45 25 25 47 49 55 
Diabetes 768 2 70 76   (σ=0.25) 74 63 63 74 74 75 

 
Sampling by AP or KM is very slow with a cost O(n^2 logn) for both and difficult 

to parallelise, but are included for comparison only. We parallelise efficiently PNN-
SC and PNN-FPC. Only PNN-SC recovers the original performance, by using sigma 
parameter from previous PNN-CV in it. At most 10% points were extracted from each 
dataset. We observe that AP on average has similar results. Thus this localized ap-
proach produce at least 10 times faster PNN, in addition to 24 times speed up ob-
tained from the 24 processors pipelined. 

6 Conclusions 

The first goal of this work is to speed up PNN. Using 24 processors the PNN training 
with cross validation and subtractive clustering approaches can impressively be speed 
up by 24 times. The next goal is to answer the question of preserving the sigma pa-
rameter founded by PNN cross-validation how many and which points can be omitted 
from the pattern layer without significant loss in the PNN performance. Using the 
sigmas found from the standard PNN directly on the Subtractive Clustering inside 
classes one can select most representative points and produce a localized PNN with 
small pattern neuron size and excellent performance that is 10 times even faster than 
the original version. If needed, additional tuning can be done by the chain gradient to 
test for the best possible PNN architecture. This approach could also be used in the 
training phase of other reduced nearest neighbour types of classifiers. 
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