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Abstract. We propose a novel approach for learning graphical mod-
els when data coming from different experimental conditions are avail-
able. We argue that classical constraint–based algorithms can be easily
applied to mixture of experimental data given an appropriate condi-
tional independence test. We show that, when perfect statistical infer-
ence are assumed, a sound conditional independence test for mixtures of
experimental data can consist in evaluating the null hypothesis of con-
ditional independence separately for each experimental condition. We
successively indicate how this test can be modified in order to take in
account statistical errors. Finally, we provide “Proof-of-Concept” results
for demonstrating the validity of our claims.
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1 Introduction

Graphical models are mathematical tools that have become widely known in
the last decades. Structural Equation Models (SEM), Hidden Markov Models
(HMM), Bayesian Networks (just to name the most common examples) are cur-
rently employed for addressing a wide range of real world applications, e.g. text
recognition, information retrieval, gene regulatory network reconstruction. De-
spite years of research, when it comes to learning graphical models from data,
there are still several open–to–debate issues; a particularly challenging problem
is dealing with experimental interventions that alter the distribution of the data.

Experimental interventions are commonly employed in any area of scientific
research. Patient randomization during clinical trials, as well as gene knock–outs
in gene expression studies are prominent examples of experimental manipula-
tions, that are usually essential for confirming scientific hypotheses. The same
system must often been analyzed under different experimental conditions, to bet-
ter investigate its operation. Unfortunately, standard graphical–model learning
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Fig. 1. A simple DAG (left), the augmented graph G∗ (center) and the DAG corre-
sponding to the experiment E1 = {IA = 2, IB = 3, IC = 4, ID = 1} (right). ID = 1 is
a hard intervention, causing the deletion of the edges pointing to D.

algorithms can not be directly employed on mixtures of experimental data; the
näıve solution of pooling all data together can lead to spurious (in)dependencies
[1], that negatively affect the learning performances. This means that a huge
amount of scientific data can not be analyzed with current graphical–model
learning methods.

We argue that any constraint–based algorithm, in principle, can be extended
for data coming from different experimental conditions. Constraint–based meth-
ods are a class of algorithms for learning graphical models that have recently
proved to be particularly effective[2,3]. This type of algorithms are built on
the basis of conditional independence tests; depending on the embedded test,
the same algorithm can deal with different types of data [4]. In this work, we
employ tests specifically devised for mixtures of experimental data within algo-
rithms originally conceived for data from a single experimental condition. This
approach significantly differs from previous works, which are mainly based on
a) computationally expensive Search–and–Score paradigms [5], or b) constraint–
based algorithms that are specific for a particular experimentation protocol and
can not address the general case [6].

To the best of our knowledge, no conditional independence test for experi-
mental data has been proposed yet. We suggest a conceptually simple test: the
null hypothesis “variables X and Y are independent given the conditioning set
Z” is separately tested for each experiment, and the null hypothesis is rejected
if X and Y are found associated at least once. In the next sections we demon-
strate that this simple procedure is sound when perfect statistical inferences are
assumed. Moreover, we propose an alternative, practical procedure for taking
into account both type II and type I statistical errors. Our experimental results
indicate that adopting our conditional independence tests leads to better results
than näıvely pooling data from different experimental conditions.

2 Notation and Problem Statement

Simply put, a sound conditional independence test for mixtures of experimental
data should be able to detect the conditional (in)dependencies characterizing
the passive obeservational case on the basis of datasets sampled under various
experimental conditions. Section 3 introduces a simple procedure, namely the
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Basic approach, that fulfils this objective. A short introduction to the basic
theories used to develop this method is presented in this section.

We assume that the data-generating procedure can be described by a Bayesian
Network. Let G = {N,A} be a Directed Acyclic Graph (DAG), where A is a set
of oriented edges and N = {N1, . . . , Nn} a set of nodes, each one representing
a variable. Under the Markov Condition and the Faithfulness Assumption, G
encodes the set of (in)dependencies of the joint probability distribution (JPD)
of the set of variablesN according to a graphical criterion, called d-separation [7].
We consider two types of interventions: hard (surgical) interventions, in which
the manipulated variables’ values are set solely by the experimental procedure,
and therefore all incoming edges to the manipulated variable are removed from
the graph; and soft interventions, in which the skeleton of the graph remains
intact, and the parameters of the distribution of the manipulated variables are
altered by the experimental procedure [8].

When we pool together data sampled under different conditions, we obtain a
new JPD which encodes certain (in)dependencies. We define G∗ = {N,A∗, IM}
as the DAG representing these independencies. Node M corresponds to the
“manipulating” variableM ∈ {1, 2, . . . m} representing the scientist performing
the m different experiments. Nodes I correspond to the interventional variables
I = {I1, . . . , In} representing the manipulations that the scientist performs on
each variable. Variable Ii can take qi integer values D(Ii) = {I1i , I2i , . . . , Iqii },
each corresponding to a different manipulation of the distribution of Ni. A

∗ =
{A ∪ {M→ Ii}ni=1 ∪ {Ii → Ni}ni=1}(see Fig. 1).

Let {Ek}mk=1 be a set of m different experiments. An experiment Ek corre-
sponds to the k-th value ofM, and is fully identified by the fixed values that the
interventional variables take during its execution. Moreover, each Ek is related
to a DAG G∗k , obtained from G∗ after removing the edges pointing to variables
targeted by hard interventions. Dk is the dataset sampled/produced during the
experiment Ek, while Pk is the JPD of the variables in Dk. Similarly, the distri-
bution over the pooled dataset DT =

⋃m
k=1 Dk is indicated as PT .

We use (¬)indk(Ni, Nj|C) to denote that “Ni and Nj are (not) independent
in Pk given C”, where Ni, Nj ∈ N and C ⊆ N \ {Ni, Nj}. By convention, a
conditional independence that holds in the observational case is indicated as
ind(Ni, Nj |C). Finally, a generic statistical procedure that evaluates the null
hypothesis “Ni and Nj are independent given C in the data distribution Pk” is
indicated as TestInd(Ni, Nj|C;Pk).

3 Assuming Perfect Statistical Inferences: Basic Approach

Let TestIndOracle(Ni, Nj |C;Pk) be an oracle, i.e. a conditional independence
test that makes no statistical errors. We now define the conditional independence
test for a mixture of experimental data TestIndBasic(Ni, Nj |C;P1 . . . Pm):

Basic approach. Let D1, . . . , Dm be m datasets sampled under different
experimental conditions, and P1, . . . , Pm the respective joint probability distribu-
tions. TestIndBasic(Ni, Nj |C;P1 . . . Pm) rejects the null (independence)
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hypothesis iff TestIndOracle(Ni, Nj|C;Pk) rejects the null hypothesis for at least
one Pk, k = 1, . . . ,m.

It is easy to demonstrate that TestIndBasic detects the preserved conditional
dependencies entailed in G:
Proposition 1. Given the set of experiments E1, . . . ,Em, the conditional de-
pendency ¬ind(Ni, Nj|C) is preserved if at least one ¬indk(Ni, Nj|C), k =
1, . . . ,m holds.

If the dependency is preserved, then TestIndOracle rejects the null hypothesis
at least once, and thus TestIndBasic also rejects its null hypothesis. Conversely,
if ind(Ni, Nj |C) holds, then TestIndBasic will accept the null hypothesis of
independence, because (a) we assume that the oracle does not perform Type I
statistical errors and (b) our settings ensure that no spurious association can be
created within an experiment by experimental manipulations, as described in the
following theorem.

Theorem 1. No dependency ¬indk(Ni, Nj|C) can hold if ¬ind(Ni, Nj|C) does
not hold in the observational case.

Proof. W assume faithfulness and Markov condition for both G and G∗k , thus a
spurious association inDk can be created iff G∗k encodes an artificial d-connecting
path not present in G. Such an artificial d-connecting path should either (a) be
encoded in the part of the G∗k structure that is in common with G or (b) pass
through the interventional nodes and M. Both cases are not possible, because
(a) soft interventions do not change G structure, and deletion of arcs due to
surgical interventions can only destroy d-connecting paths; (b) the values of
the interventional variables are held constant during each experiment, and this
implies that indk(Ni, Nj|C) ≡ indk(Ni, Nj|C, I1 = Ik1 , . . . , In = Ikn), where
{I1 = Ik1 , . . . , In = Ikn} are the values assumed by the interventional variables
in the k-th experiment. Conditioning on all interventional variables blocks all
d-connecting paths that pass through the interventional nodes, thus excluding
any spurious association. ��

4 Considering Statistical Errors: Merging Approach

The Basic approach depends on a number of assumptions that affect its practical
applicability. In a more realistic setting, type II statistical errors are possible, i.e.
the statistical power may be low. A possible solution for increasing the statis-
tical power may consist in merging different datasets; however, when data from
different experimental conditions are pooled together, Theorem 1 does not hold
anymore, and spurious associations not encoded in G may be created.

We now define a sufficient condition that ensures the absence of spurious asso-
ciations in mixtures of data from different experiments. Let Du,u ⊆ {1, . . . ,m}
be the pooled dataset from a subset of the experiments E1, . . . ,Em. Pu is the
joint probability distribution of Du. We furthermore define the set of experi-
mental modifications Su as the set of the interventional variables whose values
change, even once, across the experiments pooled in Du.
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Theorem 2. The probability distribution Pu entails no spurious association iff
|Su| ≤ 1.

Proof. When |Su| ≥ 2, at least two interventional variables, namely Ir and Is,
are not conditioned upon anymore, and thus at least one d-connecting path,
namely Nr ← Ir ←M→ Is → Ns, is present.

When |Su| = 1, all interventional variables are constant, except one, namely
Ir. However, no d-connecting path between two nodes Ni, Nj ∈ G can pass
through Ir, because such a path would be blocked by the other interventional
variables that are all conditioned upon.

When |Su| = 0 the data were produced under the same experimental condi-
tions, i.e., results of Theorem 1 still hold. ��
The results of Theorem 2 allow us to define the following conditional indepen-
dence test for mixture of experimental data, namely the S–Merging approach:

S–Merging approach. Given m experiments E1, . . . ,Em and their respective
JPDs P1, . . . , Pm, the test TestIndS−Merging(Ni, Nj|C;P1, . . . , Pm) rejects the
null hypothesis of independence iff TestIndOracle(Ni, Nj |C;Pu) rejects the null
hypothesis of independence for any Pu with |Su| ≤ 1, u ⊆ {1, . . . ,m}.
The S–Merging approach tests the existence of a dependency in any single
dataset and in any pooled datasetDu where |Su| ≤ 1 (i.e., the tests performed by
the Basic approach are always a subset of the tests performed by the S–Merging
approach). Merging different distributions does not ensure an increment of sta-
tistical power; under this respect, the S–Merging approach is clearly heuristic:
it tries to maximize the available statistical power by evaluating any subset of
datasets that can be pooled together without creating spurious associations.

Finally, both the Basic and S–Merging approaches internally perform multiple
statistical inferences, increasing the probability of type I statistical errors. We
employ a Family Wise Error Rate (FWER) correction procedure, namely the
Holm-Bonferroni method [9]. More sophisticated procedures could be adopted
for correcting for multiple tests.

5 Experiments

We considered the following experimental scenario for evaluating our approaches:
the observational case E1, two experiments E2 and E3 with 5 randomly cho-
sen manipulated variables each, and two experiments E4 and E5 such that
|S{2,4}| = 1 and |S{3,5}| = 1 (i.e. the experiments within each couple differ be-
tween each other only for a single intervention). We only considered hard (surgi-
cal) interventions. We employed three prototypical Bayesian Networks, namely
ALARM, INSURANCE and HAILFINDER, for generating synthetic discrete
data. For each network we simulated 6 mixtures of experimental data, by vary-
ing the single–experiment sample size among {50, 100, 300, 500, 700, 1000}.

On each mixture of experimental data we applied the well known, constraint–
based PC algorithm [7,10], with in turn the TestIndBasic and TestIndS−Merging
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Fig. 2. Results of the experiments on synthetic data. Each graph refers to a different
network (from left to right: ALARM, INSURANCE and HAILFINDER). The x axis
reports the sample size for each experiment, while the y axis the SHD values averaged
over 5 repetitions. Each line represents a different approach, respectively: NäıveMerging
(black solid line), Basic (red dashed line) and S–Mergin (blue line with diamonds).

tests. The G2 conditional independence test was employed internally, and the
fan–in parameter of the PC algorithm was set to 3. Furthermore, we applied the
PC algorithm equipped with the G2 test on all data pooled together; we call this
simple procedure the NäıveMerging approach. We employed the NäıveMerging
approach in order to demonstrate that indiscriminately pooling data from dif-
ferent experimental conditions leads to systematic errors. The whole procedure
was repeated 5 times, with significance threshold always set to 0.05.

The Structural Hamming Distance (SHD) was employed for comparing the
Partially Directed Acyclic Graph (PDAG) provided by the PC method with
the Complete Partially Directed Acyclic Graphs (CPDAG) corresponding to the
structures of the three networks [11]. The SHD metric has an intuitive interpre-
tation: it indicates the number of arcs that must be added, deleted, reversed or
oriented in order to transform a partial directed graph into another one.

The results of our analysis are summarized in Fig. 2. TestIndS−Merging usu-
ally allows a better reconstruction of the true CPDAG than TestIndBasic; this
result indicates that the additional tests performed by the S − Merging ap-
proach are effective in order to retrieve the true dependencies, i.e., merging
data coming from different experimental conditions can lead to an increment
of statistical power (given that the condition |Su| ≤ 1 stated in Theorem 2 is
respected). Moreover, both the S −Merging and Basic approach show better
performance when the sample size increments. Conversely, the performance of
the NäıveMerging approach decreases with the increment of the sample size.
This trend was expected: the spurious associations created by pooling all data
together become stronger as more samples are available. Thus, the PC algo-
rithm retrieves an increasing number of false associations, and these errors are
“propagated” through the network.

6 Discussion

This work constitutes a first step towards the creation of a new class of graphical–
model learning algorithms for mixtures of experimental data. Our intuition is
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conceptually simple: constraint–based methods, in principle, can be applied on
experimental data, by simply coupling a suitable conditional independence test.

Following our intuition we provided the first conditional independence tests for
mixtures of experimental data, TestIndBasic and TestIndS−Merging. Our tests
deal with datasets sampled under different experimental conditions, and attempt
to retrieve the conditional (in)dependencies entailed in the observational data
distribution. While TestIndBasic relies on the assumption of perfect statistical
inferences, TestIndS−Merging is devised in order to avoid type II statistical errors
by maximally exploiting all the available statistical power.

Furthermore, we provided a sufficient condition (Theorem 2) for avoiding the
creation of spurious associations when data from different experiments are pooled
together. Even though the rule |Su| ≤ 1 can seem quite strict, this condition has
interesting potential applications. For example, it demonstrates that a medical
study where patients are randomized between two groups can be safely merged
with a successive, follow up observational study carried on the same patients,
for increasing the statistical power of the analysis.

Finally, the experimental results obtained with the PC algorithm seem to
confirm the validity of our methods. Both the Basic and S–Merging approaches
outperform the simplistic solution of pooling all data together; as the sample
size increases, the spurious associations become stronger, and the difference
among the approaches becomes more evident. Moreover, the S–Merging ap-
proach demonstrated to be usually more powerful than the Basic one, as ex-
pected.

The class of constraint–based algorithms is particularly large, and different
algorithms show different interesting features, e.g. the possibility of learning rich
causal models like Maximal Ancestral Graphs (MAGs, [12]), or the possibility
of learning only part of the structure [11]. Our further researches will keep ex-
ploring the possibility of extending constraint–based methods for mixtures of
experimental data.

7 Related Work

A possible approach for learning graphical models from different experiments
consists in learning a first skeleton of the graph from observational data and then
to exploit external interventions for orienting edges [13]. These methods consider
each dataset in isolation, and thus underutilize the available information, and
cannot be employed in absence observational data. Search-and-Score methods
in conjunction with modified score functions [5,8] have also been employed for
learning from mixtures of experimental data. The main drawback of these algo-
rithms is that Search-and-Score procedures are usually highly computationally
demanding. Other algorithms assume that interactions among variables can be
represented with a specific type of function (e.g., noisy OR functions among
binary variables [14]), but they are applicable only when their respective, strict
assumptions hold. Constraint–based algorithms were also proposed for learning
from multiple experiments. An algorithm for learning causal models in systems
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where only one variable is manipulated at a time (per dataset) is proposed in [6].
This algorithm is not general as it can only address cases that follow a specific ex-
perimental process. A method for inferring causal relations from (in)dependence
models derived from different experiments was proposed in [15]. However, this
approach can not be applied in presence of hard interventions.

Finally, to the best of our knowledge only one work identifies a sufficient
condition for pooling together data from different experiments [1]. However,
checking this condition requires the knowledge of the underlying causal structure,
that is almost always unknown.
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