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Abstract. We report on a research effort aiming at the development of an 
acoustic bird activity detector (ABAD), which plays an important role for au-
tomating traditional biodiversity assessment studies – presently performed by 
human experts. The proposed on-line ABAD is considered an integral part of an 
automated system for acoustic identification of bird species, which is currently 
under development. In particular, taking advantage of real-field audio record-
ings collected in the Hymettus Mountains east of Athens, we investigate the ap-
plicability of various machine learning techniques for the needs of our ABAD, 
which is intended to run on a mobile device. Performance is reported in terms 
of recognition accuracy on audio-frame level, due to the restrictions imposed by 
the requirement of run-time decision making with limited memory and energy 
resources. We report recognition accuracy of approximately 86% on a frame 
level, which is quite promising and encourages further research efforts in that 
direction. 
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1 Introduction 

At present biodiversity inventories and monitoring studies are typically performed by 
expert biologists, who have to visit (periodically) sites and habitats of interest to  
conduct audiovisual, capture-recapture, or collection surveys. This is a time-consuming 
and costly task, which, due to multiple reasons, cannot be performed continuously and 
systematically for extended periods of time. Therefore, even a partial automation of 
the data collection and analysis procedures are considered to be important for devel-
oping future biodiversity assessment approaches.  

Birds are an important indicator of the conservation status of habitats and land-
scapes as well as a proxy for biodiversity patterns. Thus, the detection of the presence 
and the estimation of population trends and reproductive success of certain bird  
species groups are of significant importance as they offer a general measurement of 
the health of an ecosystem [1].  
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As birds are heard more often than seen, one promising non-intrusive method for 
monitoring their presence and activity is the acoustic detection and identification of 
avian taxa. In the present work, we focus on investigating the feasibility of automatic 
acoustic detection of bird vocalizations from real-field audio recordings and evaluate 
the recognition accuracy of the proposed ABAD, when implemented with different 
classifiers.  

In the present paper, all sounds of non-bird origin, e.g. human- or machine-made 
sounds, sounds due to natural phenomena (e.g., wind and rain), sounds from other 
animals or unanimated objects co-existing in that environment, are collectively re-
ferred to as background audio or noise. Next, all sounds of bird origin that can be 
distinguished from the audio background by a human listener are collectively labeled 
as bird vocalizations, regardless of the coexistence of background interference.  

2 Acoustic Bird Activity Detection in Real-Field Environment 

The acoustic bird activity detector serves as a gateway, which aims to eliminate from 
the input audio stream these portions of the signal that correspond to sounds of non-
bird origin. Thus, the ABAD excludes from storing or passing to the consequent 
processing stages, such as species identification, the silence intervals and any non-
bird sounds, but passes through unaltered these portions of the audio which were rec-
ognized as bird vocalizations.  

We aimed at an efficient design with respect to computation and memory, and by  
using frame-by-frame detections of the presence or absence of bird vocalizations  
in the input audio stream or with at minimal delay (Fig. 1). The acoustic bird  
activity detection process consists of three main stages audio acquisition, audio  
parameterization, and pattern recognition. While the audio parameterization step 
aims at computing descriptors, which capture the generalized acoustic properties of 
bird vocalizations, the pattern recognition step categorizes the current input audio 
frame either as bird vocalization or as background noise. Depending on the machine 
learning technique employed, this stage either estimates the degree of match between  
an unknown input signal and the pre-computed general models for the bird vocaliza-
tions and the background acoustic environment or, alternatively, makes decision 
without using any explicit modeling of the class-specific distributions. Lastly, after 
some post-processing of the binary decisions (or the scores) obtained for the current 
audio frame, a final decision is made with respect to a predefined threshold: either the 
current audio frame contains a bird vocalization or not. In the following, we briefly 
outline the consequent steps of signal acquisition, pre-processing, parameterization, 
and classification: 

Audio acquisition: Audio is captured by a microphone, next amplified and then sam-
pled at 32 kHz, so that the wide frequency range of bird vocalizations from various 
species is covered. Precision of 16-bits per sample is used to guarantee sufficient 
resolution of details for the subsequent processing of the signal.  
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Fig. 1. Block diagram of the acoustic bird activity detection process (see text for details) 

Audio Pre-processing: The pre-processing of the input audio stream consists of 
mean value removal, which is performed on the time domain signal, for eliminating 
the dc-offset that might have occurred during signal acquisition and amplification. 
Furthermore, based on prior knowledge we assume that, for most avian species, there 
is no useful information characterizing the bird vocalizations in the audio signal for 
the frequency band below 400 Hz. Thus, in order to reduce the influence of any  
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environmental noise and low-frequency interferences, such as wind, vibrations of 
nearby objects, traffic noise, a high-pass filtering is applied on the amplified audio 
signal. The high-pass filtering with a low-order filter was found to provide a reasona-
ble trade-off between computational demands and improvement of recognition accu-
racy, as it requires significantly fewer computational and memory resources when 
compared to contemporary noise reduction methods, such as those discussed in [2]. 
Specifically, it was experimentally found that a Butterworth filter of order 6 with cut-
off frequency 400 Hz effectively reduces the low-frequency noise and improves the 
overall recognition accuracy. The audio pre-processing also includes Hamming win-
dowing of the signal, and thus all consequent processing is performed on a frame 
level. In the following we assume audio frame size of 20 ms and skip step of 10 ms. 

Audio Parameterization: Previous work on acoustic bird activity detection from 
real-world data reported the importance of tonal audio features [3] and their advan-
tage over the traditional Mel-frequency cepstral coefficients (MFCC) in noisy condi-
tions. In the present work, we make use of a more diverse set of audio parameters that 
facilitates the robust detection of bird vocalizations in non-stationary noise environ-
ments. In particular, each audio segment obtained after the audio pre-processing step 
is zero-padded to 1024 samples and then becomes subject to the audio parameteriza-
tion procedure. Specifically, we compute two types of complementary audio descrip-
tors: temporal (zero crossing rate, frame intensity) and spectral (MFCC, frame energy, 
fundamental frequency, probability of voicing, and the harmonics-to-noise ratio). 
These audio descriptors have been successfully used in audio processing and sound 
classification tasks, and offer improved robustness in noisy conditions. In the present 
work, we computed all audio parameters via the openSMILE acoustic parameteriza-
tion tool [4]. In particular, for each audio frame we computed 12 MFCCs following 
the default HTK setup [5], the root mean square energy of the frame (E), the voicing 
probability (Vp), the harmonics-to-noise ratio (HNR) by autocorrelation function, the 
dominant frequency (Fd) normalized to 500 Hz, the intensity (Int) and the zero cross-
ing rate (ZCR). Stacking together these audio parameters results in a feature vector of 
18 audio features. Post-processing for dynamic-range normalization was applied to all 
audio features for equalizing the range of their numerical values. 

A series of feature-ranking and selection tests have shown that the abovementioned 
static audio features are sufficient to carry out the recognition task and that appending 
to the feature vector their first and second time derivatives contributes less to improv-
ing the overall recognition accuracy. Yet, appending the time derivatives to the static 
features increases significantly the length of the feature vector, and thus, the demand 
of training data needed for robust model development, but also the computational 
demands. 

Pattern Recognition Stage: The audio features obtained to this end are fed to a bi-
nary classifier which is trained to discriminate between the bird vocalizations and the 
background acoustic noise. Depending on the machine learning method employed, 
the decisions obtained (or alternatively the scores computed) for each audio frame are 
next post-processed. This post-processing aims at eliminating sporadic erroneous 
labeling of the current audio frame, e.g., due to momentary burst of interference, and 
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thus contributes to the improvement of the overall recognition accuracy. A simple and 
computationally effective rule for post-processing is smoothing each decision (or 
score) with respect to its closest temporal neighbors. In particular, when the previous 
N neighbor audio frames and the following N neighbor frames were recognized as 
bird vocalization then the current frame is also (re)labeled as bird vocalization. Like-
wise are processed the frames whose neighbors were recognized as category back-
ground audio. The length w of the smoothing window is subject to investigation and 
in the general case is equal to 2 1w N= + , where 0N ≥ . The case N = 0 corresponds 
to eliminating the post-processing of the recognized labels, while the cases N = 1, 2, 3 
correspond to window size w = 3, 5, 7. 

Eventually a final decision about the label of the current audio frame (either bird 
vocalization or background noise) is made after applying a predefined threshold on 
the post-processed scores. This threshold controls the ‘sensitivity’ of the ABAD and 
allows for some trading-off of false alarm errors vs. target miss errors, and thus al-
lows for fine-tuning the operational mode and the gating properties of the ABAD. 
Furthermore, the choice of threshold levels directly affects the amount of the audio 
data fed to the subsequent audio processing steps. 

3 Evaluation Setup and Results 

In the following subsections, we describe the evaluation dataset, the experimental 
setup, and discuss the experimental results. 

3.1 Real-World Dataset  

The dataset used in the present research is a small excerpt from our collection of au-
dio recordings, obtained in the Hymettus Mountains west of Athens, Greece. The 
recordings have been manually tagged (labels: bird vocalization vs. background au-
dio) by an engineer with considerable experience in the area of audio processing. The 
training data representing the category bird vocalizations consists of approximately 6 
minutes of concatenated bird vocalizations (35636 audio frames) extracted from 50 
audio files, each with average duration of approximately 30 seconds. The training 
data for the category background audio was represented by a similar amount of audio, 
extracted from the same 50 files, and contains environmental sounds typical for our 
study area.  

The test dataset consisted of another subset of 150 files (271024 audio frames), 
which were processed by each of the machine learning algorithms outlined in the next 
subsection. 

3.2 Experimental Setup 

We investigated the applicability of various machine-learning techniques, for the 
implementation of the binary classifier. Classifiers belonging to different categories of 
algorithms were selected: 
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• k-nearest neighbors classifier with linear search of the nearest neighbor and 
without weighting of the distance – also known as instance based classifier 
(IBk) [6], 

• Bayes network (BayesNet) [7], with Simple Estimator (alpha = 0.5) and the K2 
search algorithm (maximum number of parents = 1); 

• 3-layer Multilayer perceptron (MLP) neural network [8] with architecture 18–
10–1 neurons (all sigmoid) trained with 50 000 iterations; 

• Pruned C4.5 decision tree (J48), with 3 folds for pruning and 7 for growing the 
tree [9]; 

• Support vector machine with sequential minimal optimization (SMO) algorithm 
[10] and RBF kernel [11].  

We made use of the Weka [12] implementations of these algorithms with the default 
values of all parameters, which are not specified here.  

A common experimental protocol was followed during the evaluation of all clas-
sifiers. Specifically, the ABAD implemented with different binary classifiers were 
treated uniformly and were trained with the dataset outlined in Section 3.1. The rec-
ognition accuracy of the ABAD was evaluated on audio-frame level in terms of per-
centages of correct detections on the test dataset specified in Section 3.1. 

3.3 Experimental Results 

The ranking of the machine-learning methods was made on the basis of their classifi-
cation accuracy for the case of no post-processing of the frame decisions (N = 0) (Ta-
ble 1). Specifically, the ABAD implementation based on the Multilayer Perceptron 
(MLP) neural network demonstrated the highest recognition accuracy, followed by the 
Support Vector Machine with sequential minimal optimization (SMO), the k-nearest 
neighbors classifier (IBk), the decision tree (J48), and finally the Bayes Network 
(BayesNet).  

Table 1. Recognition accuracy (reported in percentages) for the acoustic bird activity detection 
implemented with various machine-learning techniques and different length, w, of the 
smoothing window 

Binary  
Classifier 

w=1 
(N=0) 

w=3 
(N=1) 

w=5 
(N=2) 

w=7 
(N=3) 

MLP 85.0 86.3 86.1 86.0 
SMO 79.1 81.4 81.0 80.8 
IBk 78.5 82.9 82.1 81.4 
J48 74.9 79.1 78.0 77.2 
BayesNet 64.9 65.8 65.6 65.5 

 
This ranking is not surprising considering the limited amount of data used for train-

ing the binary classifiers, as well as the fact that some of the audio features in the 
feature vector are correlated to a certain degree. For instance the frame energy (E) is 
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correlated with the frame intensity (Int), and the voicing probability (Vp) is correlated 
to the harmonics-to-noise ratio (HNR). However, it was observed that this redundancy 
in the feature vector, in fact, contributes to the improvement of the robustness to 
noise. One explanation for this effect could be that since the audio features in these 
pairs are computed in dissimilar manner, they are affected in different ways by the 
interference. Thus, in noisy conditions, depending on the noise type, these audio fea-
tures complement each other, and thus contribute to the overall improvement of the 
noise robustness.  

We want to emphasize that smoothing the scores (or the decisions) of the binary 
classifier is beneficial only when the closest temporal neighbors (corresponding to the 
previous and next audio frame) are used (N = 1) but this advantage is reduced when 
the decisions for the more distant neighbors (N = 2, 3) are accounted for.  

The highest overall recognition accuracy of 86.3% was obtained for the MLP clas-
sifier in combination with post-processing with a smoothing window, w = 3, i.e., 
when the scores of the two closest neighbor frames (previous and next) are used. In 
practice, this smoothing scheme requires delaying the final decisions of the ABAD 
with one time-step with respect to the decisions made by the binary classifier. In our 
setup this delay is 10 ms, as the overlapping between two consecutive audio frames is 
10 ms. 

The relatively low absolute value of the recognition accuracy, 86.3%, can be ex-
plained with the non-stationary and fully uncontrolled conditions in our real-field 
environment (Hymettus Mountains), where interferences resulting from human pres-
ence and activities and from natural phenomena, such as wind and rain, are quite 
common and co-occur in time and space with the bird vocalizations. Nevertheless, 
when more annotated real-field data become available, we intend to experiment with 
more advanced statistical modeling techniques which explicitly address the intra-class 
distribution of the data for each class, which is expected to reduce the false accep-
tance rates.  

In conclusion, it is worth noticing that the ABAD implemented with MLP-based 
binary classifier with architecture 18-10-1 is quite compact. This makes the ABAD 
computationally inexpensive, and less memory demanding, in contrast to the other 
implementations, with the instance based k-nearest neighbor classifier, or with the 
SMO (with RBF kernel) classifier. All these make the ABAD implementation with the 
MLP classifier followed by smoothing window, w =3, quite suitable for porting as an 
“App” on a contemporary handheld mobile device. 

Acknowledgements. The research reported in the present paper was supported by the 
AmiBio project (LIFE08 NAT/GR/000539), which is implemented with the contribu-
tion of the LIFE+ financial instrument of the European Union (project web-site: 
www.amibio-project.eu).  

The authors wish to acknowledge the contribution of Mr. Stavros Ntalampiras, and 
Mr. Theodoros Kostoulas from the University of Patras and also to the entire team of 
the Association for the Protection and Development of Hymettus (SPAY), who sup-
ported the implementation of the audio data collection campaign in the Hymettus 
area. 



 Acoustic Bird Activity Detection on Real-Field Data 197 

References 

1. Dawson, D.K., Efford, M.G.: Bird population density estimated from acoustic signals. 
Journal of Applied Ecology 46, 1201–1209 (2009) 

2. Loizou, P.: Speech Enhancement: Theory and Practice. CRC Press (2007) 
3. Jančovič, P., Köküer, M.: Automatic detection and recognition of tonal bird sounds in 

noisy environments. EURASIP Journal on Advances in Signal Processing 2011, Article ID 
982936, 10 (2011), doi:10.1155/2011/982936 

4. Eyben, F., Wöllmer, M., Schuller, B.: OpenEAR - introducing the Munich open-source 
emotion and affect recognition toolkit. In: Proc. of the 4th International HUMAINE Asso-
ciation Conference on Affective Computing and Intelligent Interaction, ACII 2009 (2009) 

5. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., 
Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK book (for HTK Version 
3.4), Cambridge University Engineering Department (2006) 

6. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 
(1991) 

7. Bouckaert, R.R.: Bayesian networks in Weka. Technical Report 14/2004. Computer Sci-
ence Department. University of Waikato (2004) 

8. Chester, D.L.: Why two hidden layers are better than one. In: Proc. of the International 
Joint Conference on Neural Networks, vol. 1, pp. 265–268 (1990) 

9. Quinlan, R.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San 
Mateo (1993) 

10. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s 
SMO algorithm for SVM classifier design. Neural Computation 13(3), 637–649 (2001) 

11. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002) 
12. Witten, H.I., Frank, E.: Data Mining: practical machine learning tools and techniques. 

Morgan Kaufmann Publishing (2005) 
 

 


	Acoustic Bird Activity Detection on Real-Field Data
	Introduction
	Acoustic Bird Activity Detection in Real-Field Environment
	Evaluation Setup and Results
	Real-World Dataset
	Experimental Setup
	Experimental Results

	References




