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Abstract. Image segmentation is a very active area of research in machine vi-
sion. In this work, an innovative methodology is presented that allows the seg-
mentation of objects in three-dimensional images with initial user intervention. 
The paper describes the adopted approach for implementing the algorithm of 
deformable / active surfaces (AS), using the explicit scheme for numerical 
evaluation of the partial derivative equation of the AS evolution. Both the Vec-
tor Field Convolution (VFC) and the Gradient Vector Flow (GVF) image dy-
namic field are investigated for 3D segmentation using the AS. The proposed 
methodology is implemented as software tool, which allows the initialization of 
AS using cylinder-like surfaces with user intervention. Initial results are pro-
vided for the case of three-dimensional synthetic data and clinical Computed 
Tomography (CT) images, in terms of segmentation accuracy and speed of 
convergence. 

Keywords: Computer Vision, Deformable surface, Active surfaces, Object 
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1 Introduction 

Image segmentation is a central problem in computer vision. Object segmentation 
from three-dimensional images is a special, more demanding case of this task, which 
finds numerous applications in automated diagnosis, medical decision support sys-
tems and medical treatment planning and assessment. The concept of active contours 
for image segmentation was first reported for segmenting objects of interest in [1]. 
Since then, the methodology of active contours and active surfaces has been widely 
reported in literature [2]. A number of variants have been applied, using several im-
age-based definitions of the external force field. In [3] an internal force component 
parallel to the contour outward normal vector was introduced to simulate the inflating 
balloon effect. The image edge strength is utilized in [1], the Gradient Vector flow 
(GVF) [4], [5] and the Vector Field Convolution (VFC) [6] are more recent advances. 
Almost all active surface approaches require proper initialization when applied to 
images with multiple objects. In this work, we propose an explicit scheme for the 
evolution equation of an Active Surface (AS) model. The AS model is constructed on 
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a rectangular grid rather on a Delaunay triangular mesh, allowing simpler arithmetic 
operations for calculating partial derivatives. A software tool is developed for provid-
ing the AS model with user-based initialization using simple cylinder-like surfaces. 
The rest of the paper is structured as follows: Section 2 presents the proposed meth-
odology for AS evolution, while Section 3 reports the results obtained by the evalua-
tion of the method. Finally, Section 4 concludes the paper. 

2 Methodology 

2.1 Active Surface (AS) Explicit Evolution 

In this section we present the adopted mathematical modelling approach for the AS 
evolution. Let us define the deformable contour (snake) consisting of Np points at 

time t, as ( ) ( ) ( ) ( ) ( )( ), , ,
T

t t t ts t s x s y s z s= =v v , with 1, ps N⎡ ⎤∈ ⎣ ⎦  . According 

to [8] the evolution of an active contour ( ),s tv , under the influence of external 

force field ( )( ),ext s tf v  is given by 
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where the ( ) ( ), , ,s t s t′′ ′′′′v v  are the 2nd and 4th derivative order with respect to 

parameter contour parameter s and a, β are parameters controlling the shape of the 
snake.   

In the case of the active (or deformable) surface ( ), ,s u tv  at time t, consisting of 

Nc contours with Np points each, as ( ) ( ) ( ) ( )( ), , , , , , ,
T

t t ts u t x s u y s u z s u=v , with 

( ) [ ], 1, 1,c ps u N N⎡ ⎤∈ × ⎣ ⎦  the AS evolution equation is similar to (1):  
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Eq. (2) can generate 3 partial differential equations (PDE), one for each Cartesian 
coordinates of the AS points. The 2nd and forth order derivative in (2) are calculated 
as following: 
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The above partial derivatives can be arithmetically approximated using central differ-
ences, independently along the s (contours) and u parameters. If we temporarily drop 
the time parameter symbol t, the partial derivatives of the active surface along the s 
parameter are approximated as following: 
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where the * stands for the linear convolution operator. We can enforce closed con-
tours along the s or u parameter by using modulo operations for the point parameters 
[7, p.9] i.e. ( ) [ ] ( ) ( ) ( ) ( )1, 1, 2,1 , 1, 2 , ,ss pu s u s u s u N u= − ∗ = + − +v v v v v . 

By discretising the time derivative in (2), we obtain the discrete AS evolution 
equation, in a manner similar to [5, (A10)]: 
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The above equation is the forward Euler arithmetic approximation of the active sur-
face PDE, often called explicit PDE scheme [11]. We utilized this approach, since the 
implicit PDE approximation, as described in [6, Eq.(9)], [7] would require the inver-
sion of an NxN pentadiagonal matrix, with N=NcxNp, for each time iteration. Despite 
the fact that efficient techniques exist for inverting such tables [9], [10], the size of the 
matrix imposes prohibitive memory requirements (N may easily be of the order of 104 
– see Table 1). Eq. (5) converges without numerical instability for Δt < 0.25 [8]. The 
parameters a in (2), (5) was set to 0.2 for anatomical objects and 0.25 for synthetic 
data, whereas and the parameter β was set to 0.1 for anatomical objects and 0.2 for 
synthetic data, as determined experimentally. 

The AS is allowed to iterate until the average positional difference between two 
consecutive iterations falls below the threshold of 0.1 pixels. 

2.2 Definition of External Force Field 

In order to calculate the corresponding AS model external forces, we utilize the Vec-
tor Field Convolution (VFC) [6], which was reported to be superior to the Gradient 
Vector Flow image dynamic field, described in [4]. VFC is generated using a kernel 
K containing vectors that point towards the origin of K. The magnitude of the vectors 
is calculated using [6 (15)] setting the γ parameter to 2.2. The size of the kernel K was 
set to 32 pixels for both trachea/synthetic data in [6 (17)]). The GVF force field is 
generated using a homogeneous diffusion of the original image gradient vector. Each 
iteration of the diffusion operation is performed using 2D convolution with the  
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following matrix 
0 0

1 4

0 0
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μ μ μ
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⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 as described in [7, Eq.(26)], with μ=0.2.  The num-

ber of iterations for implementing the diffusion of the image gradient was set to 100. 
For the implementation of the VFC and GVF, the Matlab source code, which is avail-
able in [6] was used. 

2.3 User Intervention 

The user may intervene in a number of ways in order to optimise the segmentation 
results. The most important intervention is the initialization of the Active Surface, 
since it directly affects the correct convergence and the segmentation accuracy of the 
AS model. The main objective is the use of simple initializing shapes, easy to be de-
fined by the used, whereas achieving sufficient proximity to the required object. In 
this work we utilize two kinds of cylinder-like initializing surfaces: a) a homogenous 
cylinder with a straight vertical axis and b) a non-homogeneous cylinder (variable 
radius) with C0 continuous axis. We choose this type of initialization because of its 
simplicity and ease of user-based input.  

3 Results 

Results are presented using both 3D synthetic data and anatomical objects from CT 
images. We used the two-dimensional (2D) synthetic data of [4], [6] to create a 
64x64x64 raw volume as shown in Fig.1. This shape has been used extensively for 
Active Contour / AS testing, since it is characterized by a deep and narrow cut that 
cannot easily be discovered by the AC/AS methods.  

The AS is initialized using variable radius straight axis cylinder (Fig. 1b), consist-
ing of 64 contours with 320 points each. The final AS using the VFC external force 
field is shown in Fig. 1c, after 260 iterations, with execution time equal to 99 sec 
using Matlab 7.9.0, running on a laptop with i5 at 2.40 GHz CPU and 4GB of RAM. 
It is evident that the AS has converged to the correct shape, despite the difficulty pre-
sented by the required shape. The intersection of the converged AS with the mid-slice 
of the synthetic volume data (Fig. d) confirms visually the accuracy of the segmenta-
tion. The average distance of the AS points from the shape edge voxels was 0.195 
voxels.  

In Fig.2 a comparison of the total positional error (in voxels) of the converged AS 
under the GVF and the VFC external force field is shown for the synthetic volume 
data. It can be observed that the VFC converges faster and more accurately than the 
GVF. The intersection of the AS with slice 32 is given for selected iterations (the last 
iteration for both cases is included).  
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(c) (d ) 

Fig. 1. Segmentation of 3D synthetic data (a) using AS initialized as a cylinder-like surface (b). 
The converged AS and its intersection with the mid-slice of the 3D data is shown in (d) and (c).  

Fig. 2. The evolution of the AS positional error in the case of 3D synthetic data, using VFC and 
GVF external force field 
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Fig. 3. (a) The evolution of AS under VFC (iterations 1,20,40,60,80,100,200,460)  and (b) GVF 
(iterations 1,20,40,60,80,100,200,581) 

In Fig.4 the results of segmenting a part of the trachea are presented using AS with 
GVF and VFC. The AS is initialized by the used as the cylinder in Fig.3a. User ini-
tialization was performed in 5 out of the 40 processed transverse slices, inside the 
required object. The converged AS using GVF and VFC is shown in (b) and (c) re-
spectively). The intersection of the initial AS model, the AS at the 10th iteration and 
the converged AS is also given for VFC and GVF in (d) and (e) respectively. It can be 
observed that the segmentation performed by the VFC appears more accurate than the 
AS under the GVF external forces.  

The numerical results from the performed experiments are presented in Table 1. 
The average positional error in the case of the anatomical objects was calculated 
based on object delineation by expert user. It becomes obvious that the proposed tool 
can find practical use in a research and even in a clinical environment, since it allows 
object segmentation from 3D data with low degree of user intervention. The VFC 
appears to converge slightly faster and more accurately both in synthetic data and 
clinical volumes. 

Table 1. Numeric results form the AS-based object segmentation 

Object  Method NcxNp Num. of itera-
tions 

Average positional 
error (voxels) 

Synthetic GVF 64x320 581 0.149 
 VFC 64x320 460 0.097 
Trachea I GFV 42x70 155 0.81 
 VFC 42x70 148 0.72 
Trachea II GVF 40x80 112 1.02 
 VFC 40x80 91 1.12 
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(a) 

(b) (c ) 

 
(d) (e) 

Fig. 4. Segmentation of the trachea with AS initialized in (a), using VFC (b) and GVF (c). The 
intersection of the initial AS, the AS at the 10th iteration and the converged AS is also given for 
VFC and GVF in (d) and (e) respectively.    

4 Conclusions 

In this paper we presented a novel 3D segmentation methodology based on AS mod-
elling, which has been implemented as an intelligent software tool. The developed 
tool has been tested in both synthetic and clinical data. In both cases the accuracy of 
the evolved model is quite satisfactory. The corresponding quantitative and qualitative 
results from the visual assessment show that the proposed method is capable of accu-
rately modeling anatomical structures, requiring only limited user intervention. 
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