
Clustering of High Dimensional Data Streams

Sotiris K. Tasoulis1, Dimirtis K. Tasoulis2, and Vassilis P. Plagianakos1

1 Department of Computer Science and Biomedical Informatics,
University of Central Greece,

Papassiopoulou 2–4, Lamia, 35100, Greece
{stas,vpp}@ucg.gr

2 Winton Capital Management,
1–5 St Mary Abbot’s Place, SW8 6LS, United Kingdom

d.tasoulis@wintoncapital.com

Abstract. Clustering of data streams has become a task of great inter-
est in the recent years as such data formats is are becoming increasingly
ambiguous. In many cases, these data are also high dimensional and in
result more complex for clustering. As such there is a growing need for al-
gorithms that can be applied on streaming data and the at same time can
cope with high dimensionality. To this end, here we design a streaming
clustering approach by extending a recently proposed high dimensional
clustering algorithm.

Keywords: Clustering, Data Streams, Kernel Density Estimation, In-
cremental Principal Component Analysis.

1 Introduction

Recent technological advances have made the continues collection of data trivial,
leading to very large databases that grow at an unlimited rate and usually it is
either unnecessary or impractical to store them. These streaming data present
new challenges to clustering algorithms.

A streaming clustering process aims to continuously track the clustering struc-
ture of the data. Since stream data by nature impose a one pass constraint on the
design of the algorithms, this task becomes more difficult. In addition, in many
cases, streaming data are also high dimensional and in result more complex
to cluster, due to the effect that high dimensionality has on distance or simi-
larity [10,1]. Recently in [11] a density based hierarchical clustering approach
(dePDDP) has been proposed that can deal with high dimensional data by pro-
jecting them onto a lower dimensional subspace.

Most clustering methods cannot be used for streaming data, since they rely
on the assumption that the data are available in a permanent memory structure,
from which global information can be obtained at any time. However, in many
cases a clustering algorithm can be extended to the concept of data streams. A
k-means clustering model for data streams was proposed in [4] and more recently,
in [3] the DENSTREAM algorithm was developed by extending the GDBSCAN

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 223–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 S.K. Tasoulis, D.K. Tasoulis, and V.P. Plagianakos

algorithm. In this paper, we extend the recently proposed dePDDP framework
and propose a new method for high dimensional data stream clustering.

In the next Section, we present the background material. In Section 3, we
summarize the proposed approach and in Section 4 we present the experimental
analysis that demonstrate the method’s efficiency. Finally, the paper ends with
concluding remarks in Section 5.

2 The dePDDP Algorithm

The dePDDP algorithm [11] is an algorithm that can deal with ultra high dimen-
sions and has the ability to automatically retrieve the number of the clusters in
the dataset. dePDDP is a divisive hierarchical clustering algorithm, producing
a nested sequence of partitions, with a single, all-inclusive cluster at the top.
Starting from this all-inclusive cluster the nested sequence of partitions is con-
structed by iteratively splitting clusters, until a termination criterion is satisfied.
The main characteristic of the dePDDP algorithm is that it incorporates infor-
mation from the density of the projected data onto the first principal component.
The dePDDP procedure suggests that by splitting the data based on the global
minimizer of the estimated density of the projected data onto the first principal
component, is the best we can do to avoid splitting coherent data clusters. The
cluster selection criterion and the termination criterion are guided by the same
idea.

To formally describe how the principal direction projection based algorithm
operates, let us assume that the data at hand is represented by an n× a matrix
D, in which each row represents a data sample di, i = 1, . . . , n, and a denotes
the dimensionality. If we define the vector b and matrix Σ to represent the mean
vector and the covariance of the data respectively:

b =
1

n

n∑

i=1

di, Σ =
1

n
(D − be)�(D − be),

where e is a column vector of ones. The covariance matrix Σ is symmetric and
positive semi-definite, so all its eigenvalues are real and non-negative. The eigen-
vectors uj j = 1, . . . , k corresponding to the k largest eigenvalues are called the
principal components or principal directions. The dePDDP algorithm uses the
projections pi:

pi = u1(di − b), i = 1, . . . , n,

onto the first principal component u1 to initially separate the entire data set
into two partitions P1 and P2 based on a global minimizer x∗:

Definition 1. (Global Minimizer) A global minimizer x∗ is a point of R

such that f̂(x∗;h) = minx X , where X = {x ∈ R : ∃δ > 0, f̂(x + δ;h) >

f̂(x;h) and f̂(x− δ;h) > f̂(x;h)}.

Clustering of High Dimensional Data Streams 225

The kernel density estimation f̂(x;h) of the density of the projected data onto
the first principal component is given by the equation:

f̂(x;h) = n−1h−1
n∑

i=1

K ((x− pi)/h) . (1)

The kernel choice in this work is the standard multi-variate normal density given
by K(x) = (2π)−1/2e−0.5|x|.

Thus, ∀di ∈ D, ifpi � x∗ then the i-th data point belongs to the first partition
P1 P1 = P1 ∪ di; otherwise, it belongs to the second partition P2 = P2 ∪ di. The
algorithm proceeds by splitting the cluster with the lowest global minimizer value
and stops the iteration if no minimizer exists for any of the remaining clusters.

3 The Proposed Clustering Algorithm

To extend the dePDDP approach to streaming data we need to online update
the hierarchical structure of the algorithm at each data point arrival. Thus, the
proposed streaming modification will use the standard dePDDP methodology to
assign the data entry to an already defined cluster or to create a new one.

In more detail, at each time instant n for each new data point arrival dn, the
proposed algorithm appropriately updates the hierarchical clustering structure
constructed up to that time point. Starting from the root node the data points
will be first projected on the u1 Principal Component (PC) of all the points that
have already been assigned to that node. Consequently, they will be assigned to
a sub-node as described in Section 2, based on the density estimate f̂(x;h) of
all the points assigned to that node.

However, this would imply that all the points assigned to each node need to
be kept in memory in order to calculate both the PC u1 and f̂(x;h), which is
unrealistic in the data stream scenario. Nevertheless, online methods have been
developed that overcome this constraint for online adaptation of both u1 and
f̂(x;h) respectively. Here, for the principal component u1 we use the candid
covariance-free IPCA (CCIPCA) method [12], which is based on the works of
Oja and Karhunen [6] and Sanger [8]. The CCIPCA method is described in
Section 3.1. To efficiently calculate the density function over data stream, we
employ the method introduced in [14] based on the M-kernels concept. The main
characteristic of this methodology is that it only uses a fix-sized main memory,
which is irrespective of the total number of data points in the stream and the
time complexity is linear to the size of the data stream (see Section 3.2).

The complete algorithmic scheme of the new SPDC (Streaming Principal Di-
rection Clustering) algorithm is presented at Algorithm 1. For each node of
the hierarchical structure the algorithm keeps in memory the node identity ID,
the PC uID

1 , the Density Function f̂(x;h)ID, and the identity of the left and
right kid RkidID and LkidID, respectively. For each point arrival dn, the PC
is updated and dn is projected onto the updated PC. Then the density function is

226 S.K. Tasoulis, D.K. Tasoulis, and V.P. Plagianakos

updated and d is assigned to the left or right sub-node based on the minimizer
x∗ as explained in Section 2. The iteration stops when there is not a minimizer
and the algorithms returns the identity ID.

Algorithm 1. The SPDC algorithm summary

1: For each point arrival dn
2: Do
3: ID = RootNode
4: Update uID

1 and calculate pIDn = uID
1 dn

5: Update Density f̂(x;h)ID with pIDn
6: if there is a minimizer x∗ then
7: If pIDn � x∗ then ID = RkidID else ID = LkidID

8: go to 4
9: end if

3.1 Incremental PCA

Let d1, d2, . . . be the sample vectors that are acquired sequentially. Each dn, n =
1, 2, . . ., is a a-dimensional vector. Without loss of generality, we can assume that
dn has a zero mean (the mean may be incrementally estimated and subtracted
out). Then the nth step estimate un

1 of u1 is given by

un
1 =

n− 1− l

n
un−1
1 +

1 + l

n
dnd

T
n

un−1
1

‖un−1
1 ‖ ,

where (n−1/n) is the weight for the last estimate and 1/n is the weight of the new
data. The positive parameter l is called the amnesic parameter.With the presence
of l, larger weight is given to new samples and the effect of old samples will fade
out gradually. In this work, we do not use an amnesic parameter and l is set to 0.
Finally, to begin the iteration, we set u0

1 = d1 as the first direction of data spread.
A mathematical proof of the convergence of CCIPCA can be found in [13].

3.2 Density Estimation over Data Streams

To calculate the density of a point at the time frame of the stream n, we need to
calculate the sum of n elements as shown in equation (1). To find a minimizer x∗,
we need to calculate the density over n points. As expected when data comes
in the form of data stream, the large volume and the endlessness of the data
stream make it computationally impossible to keep them in memory.

To handle data stream efficiently, we can maintain a representative sample of
points with appropriately weights in order to accurately approximate f̂(x;h), as
described in [14].

Let m be the number of the sample points that we keep in memory. When a
new point arrives at time m + 1 in order to update the density function based
on this point without increasing the computational complexity of the algorithm,

Clustering of High Dimensional Data Streams 227

we merge two points based on a merging cost. As a merging cost we use the
distance between two consecutive points. Let pk and pl be the two points with
the smallest merging cost. Then pk and pl are substituted by pn = (pk + pl)/2.
The weight value of the kernel function that corresponds to pn is the sum of the
weight values of the kernel function of pk and pl respectively. Then at time point
n, the density estimation can be written as

f̂∗
n(x;h) = n−1h−1

m∑

i=1

ρ∗iK ((x− pi)/h) ,

where
∑m

i=1 ρ
∗
i = n. The bandwidth parameter is very important for the quality

of the density estimation. Most well known bandwidth strategies [9] often assign
a global bandwidth to all kernels. However, these strategies depend on the com-
plete sample, which is not known in the concept of data streams. To overcome
this problem, we use an approximate solution that complies with the processing
requirements of data streams similar to the one used in [5]. We use the “normal
reference rule” bandwidth strategy, which is the bandwidth that minimizes the
Mean Integrated Squared Error (MISE). For a sample with n samples this is

given by hn
opt = σ

(
4
3n

)1/5
, where σ is the standard deviation of the data. The

standard deviation here is computed incrementally in constant time.

4 Experimental Analysis

In this Section, we perform an experimental evaluation of the proposed cluster-
ing method on streaming data. To achieve this we employ a series of simulated
datasets. This gives the opportunity to pre-design and hence know beforehand
the structure of the data that the clustering algorithm aims to recover. In par-
ticular we construct datasets by randomly drawing points from a finite mixture
of k Gaussian distributions that represent the actual clusters in the data. 5000
points are drawn in total for each dataset. The mean of each Gaussian is ran-
domly placed in [100, 200]a and the covariance matrix is also randomly generated
by an appropriate procedure, so as to ensure that it is symmetric and positive
definite.

To assess the quality of a data partition, we use the class labels which are not
available to the clustering algorithms. We measure the degree of correspondence
between the resulting clusters and the classes of each object. In detail, let L
be the set of class labels li ∈ L, for each point di ∈ D, i = 1, . . . , n, with li
taking values in {1, . . . , L} we define the purity of a k-cluster partitioning as
Π = {C1, . . . , Ck}. The purity of Π is defined by the following formula:

p(Π) =

∑k
j=1 max {|{pi ∈ Cj : li = 1, . . . , L}|}

n
,

so that 0 ≤ p(Π) ≤ 1. High values indicate that the majority of vectors in each
cluster come from the same class, so in essence the partitioning is “pure” with
respect to class labels.

228 S.K. Tasoulis, D.K. Tasoulis, and V.P. Plagianakos

To address the question of whether all members of a given class are included
in a single cluster we use the V-measure [7] criterion. The V-measure tries to
capture cluster homogeneity and completeness, which summarizes a clustering
solution’s success in including every point of a single class and no others. Again,
high values corresponds to better performance.

Tables 1 and 2 report the clustering performance with respect to the clustering
purity, the V-measure and the number of the found clusters for several types of
datasets, respectively. For each dataset, 50 experiments have been conducted and
the mean values with the standard deviation (in the parenthesis) are presented.
The clustering performance is always measured at the last 100 points of the
stream. The performance of the proposed method is compared against the well
known DENSTREAM algorithm [3]. For DENSTREAM, the ε parameter was set
to 100. In the case of SPDC (Streaming Principal Direction Clustering), 100 M-
kernels were used in all experiments. The bandwidth parameter for the density
estimation was set as explained in Section 3.2. As shown the SPDC clustering
results yield superior Purity and V-measure in most cases.

Table 1. Mean purity, V-measure and number of the found clusters for the artificial
datasets

Dimension 2 Dimension 10

No. Of Cl. Purity V-measure Clusters Purity V-measure Clusters

SPDC SPDC

2 1.00 (0.02) 0.68 (0.09) 6.02 (1.59) 0.99 (0.06) 0.81 (0.16) 4.00 (1.43)
5 0.96 (0.07) 0.92 (0.05) 6.90 (1.68) 0.96 (0.07) 0.95 (0.05) 5.64 (1.16)
10 0.72 (0.14) 0.82 (0.09) 8.14 (2.06) 0.82 (0.11) 0.89 (0.06) 10.08 (2.26)

DENSTREAM DENSTREAM

2 0.51 (0.00) 0.00 (0.00) 1.00 (0.00) 0.85 (0.05) 0.70 (0.23) 1.70 (0.23)
5 0.22 (0.00) 0.00 (0.00) 1.00 (0.00) 0.56 (0.07) 0.60 (0.12) 2.70 (1.78)
10 0.12 (0.00) 0.00 (0.00) 1.00 (0.00) 0.23 (0.00) 0.35 (0.02) 2.00 (0.22)

Table 2. Mean purity, V-measure and number of the found clusters for the artificial
datasets

Dimension 50 Dimension 100

No. Of Cl. Purity V-measure Clusters Purity V-measure Clusters

SPDC SPDC

2 1.00 (0.00) 0.90 (0.10) 2.88 (0.82) 1.00 (0.00) 0.92 (0.08) 2.64 (0.62)
5 0.97 (0.07) 0.97 (0.05) 5.30 (0.78) 0.90 (0.13) 0.93 (0.08) 4.84 (0.86)
10 0.85 (0.11) 0.91 (0.06) 9.18 (1.73) 0.78 (0.13) 0.86 (0.10) 8.26 (1.81)

DENSTREAM DENSTREAM

2 1.00 (0.00) 1.00 (0.00) 2.00 (0.00) 1.00 (0.00) 1.00 (0.00) 2.00 (0.00)
5 1.00 (0.00) 1.00 (0.00) 5.00 (0.00) 0.92 (0.01) 0.95 (0.00) 4.60 (0.26)
10 0.17 (0.00) 0.21 (0.05) 1.50 (0.27) 0.21 (0.00) 0.31 (0.04) 1.90 (0.54)

To examine the sensitivity of the number ofM-kernels parameter used by SPDC
algorithmwe perform a series of experiments for the 50-dimensional 5-cluster case.

Clustering of High Dimensional Data Streams 229

510 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

M−kernels

Purity V−measure

Fig. 1. Mean purity and V-measure with respect to the corresponding number of M-
kernels

0.6

0.7

0.8

0.9

1

SPDC DENSTREAM

Purity

0

0.1

0.2

0.3

0.4

SPDC DENSTREAM

V−measure

Fig. 2. Boxplots of Purity and V-measure for the Forest CoverType real world dataset

For each parameter value 50 experiments have been made. As shown in Figure 1
a parameter value higher than 10 is enough to achieve high quality results.

Finally, we test the efficiency of SPDC and DENSTREAM at the Forest Cover-
Type real world dataset, obtained from the UCI machine learning repository [2].
This dataset is comprised of 581012 observations characterized in 54 attributes,
where each observation is labelled in one of seven forest cover classes. Here we
only use the 10 numerical attributes. In Figure 2 we can see boxplots of the Pu-
rity and the V-measure of the clustering result, obtained in the last 100 points
for various time point of the data stream for SPDC and DENSTREAM, respec-
tively. The ε parameter for DENSTREAM was set to 30 for better results. As
shown the SPDC results are superior in both cases. Purity values are always
high, but the V-measure obtain lower values since in most cases the algorithms
tend to find more clusters than the actual.

5 Concluding Remarks

Although many data stream clustering algorithms have been proposed in the
literature, very few of them can actually deal with high dimensionality. In this
work, we present an algorithm that can effectively deal with high dimensional
data streams. The proposed method shows promising results in synthetic and real
data scenarios. In a future work we intent to extend this approach for clustering
on evolving data streams.

230 S.K. Tasoulis, D.K. Tasoulis, and V.P. Plagianakos

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational
Program ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Heracleitus II, Investing in
knowledge society through the European Social Fund.

References

1. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is Nearest Neighbor
Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

2. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
3. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving

data stream with noise. In: 2006 SIAM Conference on Data Mining, pp. 328–339
(2006)

4. Domingos, P., Hulten, G., Edu, P.C.W., Edu, C.H.G.W.: A general method for
scaling up machine learning algorithms and its application to clustering. In: Pro-
ceedings of the Eighteenth International Conference on Machine Learning, pp.
106–113. Morgan Kaufmann (2001)

5. Heinz, C., Seeger, B.: Towards Kernel Density Estimation over Streaming Data.
In: International Conference on Management of Data. Computer Society of India,
COMAD 2006, Delhi, India (December 2006)

6. Oja, E., Karhunen, J.: On Stochastic Approximation of the Eigenvectors and Eigen-
values of the Expectation of a Random Matrix. Journal of Mathematical Analysis
and Applications 106, 69–84 (1985)

7. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based exter-
nal cluster evaluation measure. In: 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pp. 410–420 (2007)

8. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks 2(6), 459–473 (1989)

9. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley Series in Probability and Statistics. Wiley (September 1992)

10. Steinbach, M., Ertöz, L., Kumar, V.: The challenges of clustering high dimensional
data. New Vistas in Statistical Physics: Applications in Econophysics, Bioinfor-
matics, and Pattern Recognition (2003)

11. Tasoulis, S., Tasoulis, D., Plagianakos, V.: Enhancing Principal Direction Divisive
Clustering. Pattern Recognition 43, 3391–3411 (2010)

12. Weng, J., Zhang, Y., Hwang, W.: Candid covariance-free incremental principal
component analysis (2003)

13. Zhang, Y., Weng, J.: Convergence analysis of complementary candid incremental
principal component analysis (2001)

14. Zhou, A., Cai, Z., Wei, L., Qian, W.: M-kernel merging: Towards density estimation
over data streams. In: International Conference on Database Systems for Advanced
Applications, p. 285 (2003)

	Clustering of High Dimensional Data Streams
	Introduction
	The dePDDP Algorithm
	The Proposed Clustering Algorithm
	Incremental PCA
	Density Estimation over Data Streams

	Experimental Analysis
	Concluding Remarks
	References

