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Abstract. Clustering is one of the most important data analysis methods with 
applications of significant importance in many scientific fields. In computation-
al biology, clustering of gene expression data from microarrays assists biolo-
gists to investigate uncharacterized genes by identifying biologically relevant 
groups of genes. Semi-supervised clustering algorithms have proven to bring 
substantial improvements in the results of standard clustering methods especial-
ly on datasets of increased complexity. In this paper we propose a semi-
supervised possibilistic clustering algorithm (SSPCA) utilizing supervision via 
pair-wise constraints indicating whether a pair of patterns should belong to the 
same cluster or not. Furthermore we show how external sources of biological 
information like gene ontology data can provide constraints to guide the cluster-
ing process of SSPCA. Our results show that the proposed algorithm outper-
formed other well established standard and semi-supervised methodologies.  
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1 Introduction 

Clustering was, and still remains one of the most popular methods for the analysis of 
gene expression from microarray experiments, used to provide insight into the struc-
ture of the data and to aid at the discovery of biologically relevant groups of genes.  

Initial computational efforts employed classical clustering techniques [1] for group-
ing genes according to their expression profile, based on the experimentally validated 
assumption that genes involved in the same biological process exhibit similar patterns 
of variation. In most of the cases however, certain peculiarities of the gene expres-
sions at hand, like the large degree of complexity in the measured entities and the 
amount of inherent noise present in microarray experiments, prevent standard cluster-
ing methods to provide adequate results in terms of pattern similarity and biological 
correlation. Following several studies in the field of functional genomics showing the 
advantages of integrating different types of biological data [2], a solution in improv-
ing clustering results of microarray data would be to incorporate additional sources of 
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biological information [3]. An algorithmic family that could utilize prior knowledge 
on a certain field, is semi-supervised algorithms. Partially supervised clustering meth-
ods stand between purely unsupervised and fully supervised methods, benefiting from 
the advantages of both. 

Algorithms performing semi-supervised clustering have recently received a signifi-
cant amount of interest in the machine learning and data mining communities. It has 
been shown that even a relatively small amount of supervision significantly improves 
the accuracy of clustering [3]. Existing methods for semi-supervised clustering can be 
divided into two general categories known as constraint-based and metric-based ap-
proaches. In the metric-based approach an existing clustering algorithm is employed, 
but the measure of distortion used by this algorithm is first trained to satisfy the labels 
or constraints in the supervised data. On the other hand in constraint-based methods, 
the clustering algorithm itself is modified so as to integrate the user-provided labels or 
constraints, constituting this way a more suitable approach since its operation does not 
constitute of two steps but it is integrated in a single process.  

Given the above considerations, and following the constraint-based approach we 
propose a novel Semi-Supervised Possibilistic Clustering Algorithm (SSPCA). 
SSPCA extends the operation of possibilistic clustering [4] in the semi-supervised 
field, considering sets of constraints either forcing patterns/genes to cluster together 
or assigning them to different clusters. We apply SSPCA on the intrinsic problem of 
gene expression clustering. Furthermore we show how external sources of informa-
tion can guide the selection of constraints. While several types of biological data 
could serve as a source of external information; Gene Ontology (GO) Consortium  
currently serves as the dominant approach for machine-legible functional annotation.  

Experimental results on real and artificial data prove not only the efficiency of the 
proposed SSPCA against other clustering algorithms but also the advantages of using 
external sources of biological information (i.e. GO) in clustering gene expression 
data. 

2 Methods 

2.1 Constraints and Semi-supervision 

In the proposed methodology additional information (or prior knowledge) on a specif-
ic domain, is given on sets of either must-link or cannot-link constraints or both. Let E 
be the set of must-link constraints to be given in pairs (xi, xj) ε E where the instances 
xi and xj should be assigned to the same cluster, while cannot-link constraints in pairs 
(xi, xj) ε Δ where Δ is the set of cannot-link constraints and xi, xj should be assigned to 
different clusters. In the approach we are adapting a specific gene can be associated 
with more than one pair and kind of constraints. We could for example have three 
constraints that would impose a gene to be in the same group/class with some other 
three genes, while at the same time to belong to different classes with another pair of 
genes. Therefore we will insert a new metric that will calculate the number of  
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constraints that are retained for a specific gene j and the number of violations over the 
constraints within a certain cluster i: 
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where Tj is the total number of given constraints concerning the element or gene j, Rij 
are the  pairs of constraints that are preserved within the cluster, while Vij  is the 
number of constraints that are violated within the same cluster concerning sample  j. 
As we can determine from eq. (1), the range of the score of every member of the clus-
ter is within -1 and 1. Specifically concerning the range of value for βij, it is: 
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When βij approaches 1, then most of the constraints regarding the specific pattern are 
violated within the cluster, while when the score approaches -1, most of the con-
straints are preserved. At this point we should note that the score becomes zero, if 
there are no constraints regarding a specific pattern at the dataset of supervision and 
that approaches zero in the case that the percentage of constraints that are violated 
equals the number of constraints that are retained. We will expand now the metric 
proposed in (1), in order to account for the validity of a cluster in terms of retained 
constraints for all of its members: 
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where Nc is the number of the members of a cluster i.  In contrast to the previously 
proposed metric, the score of a cluster ranges from 0 to 1, where 1 is the case for 
which there is no violation for any of the members of the group/cluster regarding the 
constraints known for it, while 0 is the exact opposite case. As we will see later in the 
analysis of  those two metrics will play a central role in SSPCA algorithm. 

2.2 Gene Ontology and Constraints Selection 

We present a framework (Fig. 1) for selecting constraints from gene ontology terms 
that will be used as input to SSPCA to guide the clustering process of gene expression 
data. The Gene Ontology Consortium is one of the most widely used database con-
cerning annotations of gene functions. The number of genes associated with a certain 
annotation term indicates how specific that term is, therefore based on this criterion 
we could discriminate between general and more specific terms. Therefore two genes 
sharing a more specific term are more likely to interact than genes that share a general 
term. While, there are many GO measures in the literature that provide a quantitative 
degree of similarity between two specific genes in respect to their GO terms, Res-
nick’s [5] is one of the most widely used.  



 Gene Ontology Semi-supervised Possibilistic Clustering of Gene Expression Data 265 

 

Fig. 1. Schematic representation of the framework we adapt to extract constraints, based on 
gene ontology terms, used to guide the clustering process of SSPCA on gene expression data 

However, the main goal of the proposed method is clustering, hence along with the 
GO information we must also consider the similarity of the expression profiles for a 
certain couple of genes. Hence we will insert a measure that will take under consider-
ation both of the aforementioned criteria: 

 [ ]
2

2

1

,     j 1ij ij
ij N

ik ik
k

d s
G N

d s
=

= ∀ ∈
∑

…  (4) 

where i and j correspond to certain genes, dij is the Euclidean distance between the 
expression profiles of i and j while sik is Resnik’s similarity measure. As we can de-
pict from (4) the reverse GO similarity between two genes is weighted by their cor-
responding euclidean expressional distance, since to determine a certain constraint we 
take under consideration gene expression as well. We finally normalize by the total 
sum of these scores of i against all other genes. While sij ranges from 0 to a maximum 
value, having 0 as worst case the opposite occurs for Euclidean distance. Hence the 
range of the proposed measure ranges from 0 to a maximum value, having 0 as the 
best case. 

In order to extract the necessary constraints from a given data set, we adapt a 
methodology where every one of the genes present in the dataset under study, is 
cross-checked against all others. Each one of these pairs is given a similarity degree 
based on (4). After the process is concluded for all genes, we sort the similarities de-
grees of the corresponding pairs. A specific fraction of the pairs that have achieved a 
minimum score will be used as must-link constraints, while the ones that have the 
largest values will be used as cannot-link constraints. The exact percentage of the 
constraints is given as input to the algorithm. 

2.3 SSPCA 

In this section we will describe the operation of the proposed SSPCA algorithm. 
SSPCA through its objective function tries to minimize the distance among the pat-
terns and the corresponding centroids of the clusters while at the same time is guided 
by the pairs of constraints towards the determination of more concise clusters. The 
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mathematical description of the SSPCA objective function expanding the operation of 
possibilistic clustering in the semi-supervised field is: 
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NT represents the number of patterns in a specific cluster and NC the number of pat-
terns that are part of both the cluster and the constraints data set. The term NT over NC 
ensures that if a small number of constraints is provided in comparison to the total 
number of patterns in the dataset, these constraints will not dominate the overall clus-
tering process. We will discuss about the effect of the parameters Di later in the text, 
while and γi is in accordance to the corresponding value described in [4]. The variable 
aij is a function of uij and βij, assuming a small positive number n, ranging from zero 
to unity, we set: 

 ( ) ( )1ij ij ija n u n φβ= ⋅ − − ⋅  (7) 

In every iteration the membership value of aij depends not only on the distance xj from 
vi but also from the number of constraints that are retained or violated concerning a 
specific pattern j. As we can depict from (6) n is a parameter controlling the degree 
that constraints will be taken into account in the overall clustering process and can 
either have a fixed value throughout all the clustering process or can vary during the 
iterations steps. In cases that we are confident for the accuracy of the constraints and 
also have a satisfying number of constraints for the majority of the dataset then n can 
be viewed as a constant whose value can have a small value (i.e. ranging from 0.4 to 
0.6) that reflects the quantity and confidence of the semi-supervised information we 
have. In the case however where either we do not have a satisfying number of con-
straints for the data set and/or we have either a minimum amount of confidence or 
even uncertainty concerning the accuracy of the constraints, parameter n could be 
regarded as a time/iterations dependent variable. In this paper we will study the first 
case only.  

In possibilistic and fuzzy clustering, each pattern is a member of all existing clus-
ters up to a certain degree indicated by the corresponding membership value and 
hence all pairs of patterns constraints should be checked for violations throughout all 
clusters. We can however consider that a pattern is part of the cluster for which it has 
the maximum membership value. Hence, we can check for pattern violations, con-
cerning one cluster per pattern. This is accomplished using a function, which rewards 
or penalizes membership values only in the case of cluster members, while in the 
opposite case eliminates the influence of the constraints. Using this technique we  
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reduce the computational complexity, contribute to the faster convergence of the algo-
rithm and at the same time not harming the generality of the solution. Given all the 
above, we introduce φ as a function returning the set of patterns that have their maxi-
mum membership value within a certain cluster (i.e. compared to other clusters) at 
every iteration. The mathematical interpretation of function φ is: 
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φ(i) is a function returning the set of patterns that have their maximum membership 
value is within the i-th cluster at every iteration. Given φ we have that: 
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Using partial derivatives and the method of Largange multipliers we solve (5) in re-
spect to membership values uij and the centroids vi, hence: 
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while for the centroids we have: 
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As we can depict from (9) the value of uij is highly influenced by the value of βij and 
Di. Based on the definition given in (1) and range in (2) we can depict that in order for 
the value of uij to be increased the majority of the constraints regarding the j-th pattern 
in i-th cluster must be retained. Also the value of constraints has a zero effect when 
the number of violations equals the number of retentions. On the other hand if Di is 
high then uij will be high, if Di is low then uij will be low. Indeed as we discussed in 
the previous section based on (3) the value of Di (from 0 to unity) increases as the 
number of patterns for which the majority of constraints is retained increases within 
the a certain cluster constraints that are retained increases. 

3 Results 

In this section we will describe the experiments we conducted to test the validity of 
our approach, based on both artificial and real data sets. In the followings, we com 
pared the apodosis of SSPCA against two standard clustering techniques PK-means 
[4] and K-means as well as a semi-supervised method CPK-means [6]. 
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Table 1. Results on the apodosis of the standard clustering techniques PK-means, K-means and  
the semi-supervised method CPK-means in comparison to the proposed SSPCA 

Algorithm 
Supervision 

ARI 

SSPCA 

DS1 DS2 
0 0.39 0.30 

10 0.57 0.50 
30 0.84 0.69 

CPK-means 30 0.580 0.517 
PK-means - 0.39 0.30 
K-means - 0.460 0.362 

 
In order to test our method under more controlled conditions we resorted to artifi-

cial data (hereafter DS1). This dataset has been artificially created initiating from real 
data as described in [7]. It consists of 400 patterns across 10 different experimental 
conditions. The dataset has 10 clusters. The second dataset was based on an experi-
mental study published in [8], consisting of the expression levels of more than 6000 
genes measured across 17 time points during two cell cycles of Saccharomyces cere-
visiae (SS). From this study we have used a subset of 384 annotated genes (DS2) 
visually identified as five distinct time points, each one representing a phase of the SS 
cell cycle. The expression levels of each gene were normalized to zero mean and uni-
ty standard deviation. 

The constraints for DS1 were extracted by considering the known labels of the pat-
terns and following the methodology described in [3], while for DS2 we acquired 
constraints as described in previous section. In this study we have used information 
on the GO domain: molecular function, for the SS micro-organism. Given that the 
labels in both datasets considered are a priori known we have the adjusted rand index 
(ARI) metric [9] to measure the efficiency of the considered algorithms. A value of 
ARI equal to 1 indicate a perfect clustering according to the provided pattern labels 
while a value of zero the opposite. Clustering was repeated 10 times for the data sets 
under consideration, by all the algorithms checked and the mean values of the results 
in terms of adapted metric were used. As we have already mention the key parameter 
in the operation of SSPCA is n that controls the influence of the provided constraints 
in the overall clustering process. We have repeatedly executed SSPCA for the follow-
ing range of n values: 0.4, 0.45, 0.50, 0.55, 0.6. The best results, reported on Table 1, 
were acquired for a value of n equal to 0.6.  

As we can depict from Table 1, the results of SSPCA and PK-means is the same 
when the percentage of provided constraints equals zero, since PK-means is a special 
case of SSPCA in the non-supervised field. As we can see on the table the proposed 
algorithm outperformed both of the considered unsupervised algorithms for a small 
percentage of supervision (10%). Finally for the same percentage of provided con-
straints, SSPCA had more than 25% and 30% improved apodosis in DS2 and DS1, 
respectively than the semi-supervised algorithm CPK-means.  

The reported results not only demonstrate the efficiency of SSPCA and the benefits 
of semi-supervised over standard clustering methods but also indicate the advantages 
of using external sources of biological information to guide the clustering of gene 
expression data.  
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4 Conclusions 

In this work we presented a semi-supervised possibilistic clustering algorithm incor-
porating prior-knowledge in the form pair-wise constraints. Initial results suggested 
that the proposed algorithm outperformed other crisp and fuzzy methods. Furthermore 
we showed that under the semi-supervised framework adapting external sources of 
biological information, such as GO, for constraints selection, can significantly  
improve the clustering results.  

We are working in methodologies that will extend the operation of SSPCA by  
allowing the algorithm to automatically extract a meaningful number of clusters.  
Additionally, we are performing a wide range of additional simulations from gene 
expression data arriving from several organisms and other sources of biological know-
ledge (i.e. protein-protein interactions) to further validate the findings of this study. 
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