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Abstract. Epigenetic modifications of the genome can cause profound changes 
in phenotype of an organism. Experimental methods allow us to detect regions 
of the DNA that have been epigenetically modified; these regions are said to be 
enriched in a queried state versus a control. Detecting the enriched regions is 
not a simple matter as making sense of the data involves multiple analytical 
steps and often results in false calls. In this study, we analyze the utility of using 
additional features of the data (such as the transcription start site (TSS) and the 
histone coverage) to detect enrichment. We train a decision tree ensemble using 
these three features and review how well they identify regions that are truly 
enriched (as validated by q-PCR). We find that the enrichment score derived di-
rectly from ChIP-chip experiment data is less informative than the histone  
coverage. 

Keywords: ChIP-chip, data integration, protein-DNA, machine learning,  
decision trees. 

1 Introduction 

The detection of protein-DNA interactions is an important area of research. Protein-
DNA interactions account for various cellular events such as DNA repair and  
transcription factor binding [1-3].  Transcription factors regulate the expression level 
of gene products that carry out the majority of processes in the cell.  Histone-DNA 
interactions are a specific type of protein-DNA interactions that also influence  
the expression of genes. Indeed, DNA that is wound around histone-bodies (the  
complex form of histones) is less accessible to the cellular transcriptional machinery 
and thus genes located in these regions are less likely to be expressed [4,5]. These 
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modifications are considered epigenetic as they alter the expression of genes while 
not changing their sequences. 

A widely used technique to measure protein-DNA interaction is chromatin im-
munoprecipitation followed by DNA microarray hybridization (ChIP-chip). Using 
ChIP-chip, one is able to identify areas of the genome that are enriched between 
two conditions of interest (e.g., disease vs. control) [1,6]. Detecting the enriched 
regions is not a simple matter as making sense of the data involves multiple analyti-
cal steps and often results in false calls [7,8]. In this study, we assess whether using 
additional features enhance the detection of enriched regions [9,10]. In addition to 
the enrichment scores, extracted from ChIP-chip data, the transcription start site 
(TSS) and histone coverage scores are defined and used to train a decision tree 
based algorithms. 

While the primary feature resulting from a ChIP-chip experiment is the enrichment 
score for a region, the other two features are easily derived.  The TSS score is the 
distance of the region to the nearest predicted TSS.  The histone coverage is a unit 
value which is calculated from a regions size (in base-pairs) in relation to the size of a 
full turn of the DNA around a histone body (147 base-pairs). 

We then review how well these three features perform in predicting the regions 
that are truly enriched (as validated by q-PCR).   

2 Methods  

Our dataset consists of 25 DNA regions for which we have ChIP-chip enrichment 
scores, region sizes and distances to the nearest transcription start site, and validated 
q-PCR values. Our dataset is derived from ChIP-chip experiments essaying fragile-X 
patient samples (data unpublished). The q-PCR values define the positive and nega-
tive examples and will be considered binary for the purposes of this work. 

 

• The ChIP-chip enrichment score is derived from a data analysis procedure de-
scribed in [11,12].  Briefly, the data is processed as follows:  

• The outliers in the data are removed (probes in a 5 probe window are aver-
aged and probes which are over 2 standard deviation from the mean are re-
moved). 

• The data is normalized, by adjusting the mean of entire distribution to zero. 
• The differences between the two samples are calculated (one sample is the 

condition/disease sample and the other would be the control). 
• The data is smoothed (a 3-point moving average is calculated for each peak). 
• The probes, which show significant differences, are identified (those over 2 

standard deviations from the mean). 
• The regions of consistent difference defined by multiple probes (4 probes of a 

5 probe window) are called (flagged as significant). 
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The transcription start site (TSS) feature is calculated as the distance from the near-
est TSS.  These distances (measured in base-pairs), are then mapped to an integer  
score which varied from 0 to 5. The histone coverage is a feature which is com-
puted from the size (measured in base-pairs) of the enriched region. The size of  
the region is transformed into a unit value by applying the equation displayed in 
Figure 1. 

 

Fig. 1. Histone coverage score calculation 

The dataset, consisting of the three features and the validated q-PCR outcomes, 
is then feed to a decision tree-learning algorithm (classregtree, Matlab v7.10.0). In 
addition, a bagged decision tree ensemble classifier on the whole dataset is also 
trained.  
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This algorithm builds individual trees on the bootstrap replicates of the original  
dataset and then uses out-of-bag observations to compute unbiased estimates of the 
classification error. This is often exploited to measure feature importance. For each  
feature, its values across all the observations are permuted, after which the difference 
in mean squared error is examined. Eventually, a higher positive difference implies 
greater importance for that feature. Furthermore, we validated our results using leave-
one-out cross validation. 

3 Results and Discussion 

We run a decision tree learning algorithm on the whole dataset to examine which 
features are selected as the most informative and in which order.  We construct a 
ROC curve for each feature and examine the AUC as a heuristic to determine which 
features are the most important.  Out of the three features considered, we find that 
enrichment performs the poorly (AUC TSS: 0.62, AUC Enrichment Score 0.60, AUC 
Histone score: 0.73). This result suggests that the use of enrichment scores alone is 
not an optimal strategy to predict truly enriched regions. We observe that the TSS 
score and histone coverage, are necessary to improve performance in the prediction 
task. This observation is consistent with the results from the out-of-the-bag feature 
importance analysis (see Figure 2). 

 

Fig. 2. Out of bag importance of features 
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Figure 2 demonstrates that the highest positive difference occurs with the histone 
coverage, which implies greater importance of this feature. Surprisingly, the enrich-
ment feature is associated to a negative difference, indicating that it is the least impor-
tant of the features. In order to illustrate this finding with the original data, we create a 
scatter plot that compares the histone coverage with the enrichment value while at the 
same time indicating the positive and negative regions (see Figure 3). 

 

Fig. 3. Scatter plot of histone coverage vs enrichment score. Circles indicate negative examples 
and crosses indicate positive examples. 

Figure 3 demonstrates that negative examples (circles) are concentrated at higher 
histone coverage values while they are spread across high and low enrichment  
values. Positive examples (crosses) are also spread across high and low enrichment 
values but are mostly found at lower histone coverage values. 

The utility of the TSS score and the histone coverage is more apparent when one 
considers that the decision tree constructed using the whole dataset has a topology 
which determines the first split on the histone coverage and the second split on the 
TSS score and determines no splits on the enrichment score (see Figure 4). 

In order to assess the reliability of this approach, we ran 100 iterations of a leave-
one-out cross validation analysis.  The results were as follows: using the enrichment 
feature alone, the random forest algorithm has a mean performance (accuracy) of 0.44 
(st. dev. 0.022), when we use all three features the value rises to 0.64 (st. dev. 0.045), 
when we use the TSS score and the Histone coverage (and no enrichment value), the 
best value, of 0.76 (st. dev. 0.022), is achieved. 
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Fig. 4. Decision Tree  

As presented in Table 1, the results are consistent with the ones obtained single de-
cision trees using random forests algorithm (Matlab TreeBagger class). The lower 
accuracy of random forests comparing to single trees in this particular case could be 
explained by small size of the training data sets thought the iterations. The former 
performs additional bootstrapping step internally, effectively reducing available train-
ing data even more in this way.  

Table 1. Metric comparison across 100 experiments 

Features Random forest Decision trees  

mean std. mean std. 

TSS score, Histone coverage 0.6380 0.0237 0.7600 0.0223 

TSS score, Histone coverage, Enrichment  0.5948 0.0315 0.6400 0.0446 

Enrichment 0.4508 0.0196 0.4400 0.0223 

4 Conclusions 

This work present novel insight into the task of predicting true enrichment in regions 
detected by ChIP-chip experimentation. Our main technical contribution is two-fold.   
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First, we demonstrate that the use of enrichment scores alone is not an optimal strate-
gy. Second, we show that the use of two additional features, namely TSS and histone 
coverage, provide unique information, and are necessary to improve the prediction 
results. Looking forward, we plan to examine the integration of other features and the 
development of other strategies, which might increase predictive power. 
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