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1 Introduction 

Identification of salvageable brain tissue is a major challenge when planning the treatment of 

ischemic stroke. As the standard technique used in this context, the perfusion-diffusion mismatch has 

not shown total accuracy [1] there is an ongoing search for new imaging protocols that could better 

identify the region of the brain at risk [2] and for new physiological models that could on one hand 

incorporate the imaged parameters and predict the evolution of the condition for the individual, and 

on the other hand identify future biomarkers and thus suggest new directions for the design of 

imaging protocols. Recently, models of cellular metabolism after stroke [3] and blood brain barrier 

transport at tissue level [4] have been introduced. We now extend these results by developing a model 

of the propagation of key metabolites in the brain’s extracellular space due to stroke related oedema 

and chemical concentration gradients between the ischemic and normal brain. We also couple the 

resulting chemical changes in the extracellular space with cellular metabolism. Our work enables the 

first patient specific simulations of stroke progression with finite volume models to be made. 

 

2 Mathematical models 

We combine a metabolism model in both neurons and astrocytes, including, among others, Na
+
, Ca

2+
, 

K
+
, H

+
, lactate, glucose, CO2 and O2 dynamics [3], with a model of the variation of cellular volume as 

a function of changing intra and extracellular ion concentrations. A model of the size and tortuosity of 

the brain’s extracellular matrix varying as a function of cellular volume is included to allow 

quantification of the propagation of metabolites. Thus, the combined model results in a reaction-

diffusion problem. The components of the full model are summarized in Fig. 1. 

 

2.1 Modelling osmosis 

We assume that at steady state for the model in [3] the pressure difference across the cellular 

membrane is 0 Pa and that for any pressure the elastic restoring force of the membrane is negligible. 

Further we assume that: a) any membrane pressure gradient created by lactate, glucose, CO2 and O2 is 

negligible compared to expected gradients from ionic concentrations; b) the extra- and intra-cellular 

space is electro-neutral; c) [CO3
2-

] and [H
+
] are considered to be negligible compared to [HCO3

-
]; d) 

electro-neutrality is ensured through 

[Na
+
]i+[K

+
]i+2[Ca

2+
]i-([Cl

-
]i+[HCO3

-
]i+ zA[A]i) = 0, (1) 

where [A] denotes the concentration of non-permeable anions in the intra-cellular space, zA is the 

magnitude of the concentration-averaged charge of the non-permeable anions and subscripts e and i 

indicate extra- or intra-cellular concentrations; and 

[Na
+
]e+[K

+
]e+2[Ca

2+
]e-([Cl

-
]e+[HCO3

-
]e) = 0. (2) 

[Cl
-
]e is set by solving equation (2), [Cl

-
]i is set based on literature [5]. It is assumed that the cellular 

membrane is impermeable to Cl ions. Based on previous assumptions it must be true that 

([Na
+
]e+[K

+
]e+[Ca

2+
]e+[Cl

-
]e+[HCO3

-
]e) - ([Na

+
]i+[K

+
]i+[Ca

2+
]i+[Cl

-
]i+[HCO3

-
]i+[A]i) = 0, (3) 

and it is thus possible to determine zA and [A]i. Ion concentrations further depend on diffusion. 

 

2.2 Modelling of diffusion in the extracellular matrix 

The diffusion of molecules in the brain’s extracellular space is modelled according to Fick’s Law. 

Thus, the rate of change of a substrate concentration [S] can be written as 
    

  
 

  

        
 

 
, (4) 

where    is the diffusion coefficient of substrate S, q is the rate of change of substrate concentration 

due to chemical reactions,   is the proportion of extracellular space in the volume and   is the space’s 

tortuosity. Diffusion coefficients for key metabolites are readily available in literature [5-9] for 300K 

and at infinite dilution. Values were adjusted to the human body temperature of 310K using the 

relationship in [10]. In the case of lactate the diffusion coefficient was estimated using Einstein’s 

formula as reported in [11]. Infinite dilution was assumed for all species. The numerical values of α  



 

 

Molecule  Diffusion [10
-5

xcm
2
.s

-1
 ] Source  

Na
+ 

1.37 [6]
 

Ca
2+ 0.82 [6] 

K
+ 2.02 [6] 

Cl
- 

2.10 [6]
 

H
+ 9.62 [6] 

Lactate 1.1
 

[11] 

Glucose 0.67 [9] 
CO2 2.80 [7] 
O2 2.98 [8] 
Parameter Range of Values Source 
α 0.12-0.31

 
[12] 

λ 1.39-1.95
 

[12] 
Figure 1. Schematic representation of cell membrane 

depolarization and associated swelling and diffusion 

of molecules in the extracellular space. 

Table 1. List of parameters affecting diffusion of ions 

and metabolites in the extracellular space including 

brain’s porosity and tortuosity. 

 

and λ can be estimated by monitoring the evolution of the concentration of an injected impermeable 

ion in the brain space [12]. The brain is fairly homogenous regarding these parameters: mode values 

of α and λ emerging from the analysis of a range of brain regions and species are 0.2 and 1.6 

respectively, with extreme reported values for α being 0.12 and 0.31 [12]. The anisotropy of the 

tortuosity in the brain space has been investigated, leading to estimates ranging from 1.39 to 1.95 

depending on the direction. The directionality is mostly pronounced in the white matter. 

The model in section 2.1 allows the simulation of the growth of cells resulting from the osmotic stress 

following the depolarization of the cellular membrane during severe ischemia. Thus, in our model α is 

time dependent as the proportion of space occupied by astrocytes and neurons changes. The study in 

[13] showed that λ remains constant during osmotic challenge. However, this conclusion was made 

based on the analysis of a 2D matrix only. Using a geological analogy a relationship between λ and α 

was proposed in [14]: 

       (5) 
where β usually lies between 1/2 and 2/3. However, as this expression is a power law, accurate testing 

of its validity would require the changing of parameters over at least an order of magnitude which is 

not possible for the brain. We set   by solving equation (5) for λ=1.6 and α is set based on [3]. With   

being a function of time and space the combination of equations (4) and (5) leads to 
     

  
    

          . (6) 

 

2.3 Full model mathematical formulation 

Based on [3] and the previous sections the whole model can be summarized by a system of equations 

assuming that the change of the total mass of reactants in a finite volume of the brain is due to either 

diffusion, changes in blood supply or chemical reactions. Thus, we can write  

             +           +          , (7) 

Where M is a mass matrix for a vector of temporal derivatives   , while         ,           and 

          are respectively diffusion, blood flow and chemical reactions forcing functions. 
 
3 Implementation 

OpenCell (University of Auckland, Auckland NZ) software was used for the design and testing of the 

model at the cellular level and to make its fundamental Fortran implementation available for further 

development and computation. CellML code from [3] was used as the development base for the 

model. CFD-VISCART (ESI-Group, Paris, France) was used for meshing the 3D model of the brain 

extracted from imaging data. Matlab and Fortran were used for the mapping of post stroke perfusion 

levels on mesh cells. The CFD-ACE (ESI-Group, France) finite element solver was used for the 

coupled PDE-ODE problem with the FCVODE library (Sundials, University of California, USA) to 

compute simultaneous ODEs. 



     
Figure 2. Left: 3D model of the brain. Isosurfaces represent CO2 concentration after stroke. Darker colours refer 

to higher values. Right: Pre- and post-stroke synthetic images for model computational testing  

4 Results 

We used synthetic images of Cerebral Blood Flow (CBF) of a fictitious post-stroke patient (Fig.2) 

created based on full head Arterial Spin Labelling (ASL) perfusion images of a healthy individual to 

construct a 3D finite volume model of the brain. For a ~50 000 voxel brain volume, ~150 000 mesh 

cells were created. A plane of symmetry cutting the brain into an ischemic half and an unaffected half 

was found. Percentage change of CBF per voxel of the ischemic half was defined as the ratio of the 

intensity of the voxel to the corresponding symmetric voxel intensity. The model in [3] governed 

metabolism in each of the mesh cells and was personalised with calculated CBF changes. Fig. 2 

presents simulated changes in the concentration of CO2 concentration in the brain after stroke. The 

currently un-optimised code required 4 minutes computation per second simulation step. 

 

5 Discussions 

We introduced a novel method for the simulation of stroke progression in 3D that can be personalised 

with quantitative perfusion imaging. For real-time simulation, a speed improvement of the order of 

three orders of magnitude will be required. The cerebrospinal fluid (CSF) moves in the brain at a 

speed of ~10 μm/min and diffusion is only between one and two orders of magnitude faster. This 

means that CSF dynamics models similar to those in [15] may have to be added. Similarly a model of 

the movement of ions in electrolyte solutions will be added.  We are currently gathering post-stroke 

perfusion and tractography data to test the model with clinical images and model tissue anisotropy. 
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