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A comprehensive understanding of how genetic variation causes phenotypic variation of a complex trait is a long-
term disciplinary goal of genetics. Here we present a toolbox for utilizing curated mathematical models of 
physiology as a means towards this goal. The basic premise is that in a well-validated model that is capable of 
accounting for the phenotypic variation in a population, the causative genetic variation will manifest in the model 
parameters. 

In this context, the term phenotype refers to any relevant measure of model behaviour, whereas the term 
parameter denotes a quantity that is constant over the time-scale of the particular model being studied. However, 
even the lowest-level model parameters are themselves phenotypes, whose genetic basis may be mono-, oligo- or 
polygenic, and whose physiological basis can be mechanistically modelled at ever deeper levels of detail. 

We have proposed the term causally cohesive genotype-phenotype modeling (cGP modeling) to denote an 
approach where low-level parameters have an articulated relationship to the individual’s genotype, and higher-
level phenotypes emerge from the mathematical model describing the causal dynamic relationships between these 
lower-level processes (see figure below). It aims to bridge the gap between standard population genetic models 
that simply assign phenotypic values directly to genotypes, and mechanistic physiological models without an 
explicit genetic basis. This forces a causally coherent depiction of the genotype-to-phenotype (GP) map. 

 
 
Integrating genetics with physiological models in a population setting. In the illustration, a gene codes for ion-channel parameters, which affect 
transmembrane currents and the action potential of a heart cell. Genetically determined variation in low-level parameters propagates through multiple levels 
of electrophysiological, mechanical and fluid dynamic processes. Phenotypic variation emerges at each level of organization. A cGP model integrates a 
multiscale model of this biological system with a linkage map through the genes encoding ion channels, thus the cGP model describes the creation of new 
genotypes as a result of meiosis and mating as well the phenotypes arising from these genotypes. By simulating populations of cGP models, whose 
parameters arise by recombination of virtual genomes, we can obtain a deeper understanding of the high-dimensional in silico phenotypic data. 

The cGP approach has been further developed in an Exemplar Project of the Virtual Physiological Human 
Network of Excellence (VPH-NoE). The cgptoolbox (described below) has provided infrastructure for several 
applications, including the characterization of high-dimensional GP maps in relation to genetic concepts [1], high-
dimensional sensitivity analysis in cGP models [2], and revitalizing genome-wide association studies by focusing 
on model parameters as informative phenotypes [3]. 



Outlook for personalized medicine 

The Virtual Physiological Human Network of Excellence aims to apply multilevel physiological modelling in 
patient-specific healthcare and in simulation studies of disease-related processes. This requires expanding the 
scope of multilevel physiological modeling to the genome and population levels. Computational models of multi-
level physiology imply a mapping from low-level parameters to clinically relevant phenotypes. Supplemented by 
a link from genomic databases to model parameters, this defines what we call a causally cohesive genotype-
phenotype (cGP) model. Tailoring treatment to individual genetics is a stated goal of the VPH in the post-
Genomic era1. However, understanding gene-disease associations requires population-level analyses accounting 
for genetic interactions and genotype frequencies in the population. 

Aims of the cgptoolbox 

The cgptoolbox aims to facilitate researchers' entry into cGP modeling by providing a cGP modelling framework 
in a population context, integrating and interfacing with existing VPH tools. The toolbox will provide the means 
for extensive explorative in silico studies as well as integration of patient-specific information in multiscale 
models to account for the individual’s genotype in the model parameterisation process. 

The cgptoolbox is open source and hosted at https://github.com/jonovik/cgptoolbox. It adds to the VPH Toolkit by 
integrating genetic structure information, bioinformatic information and infrastructure, and multiscale and 
multiphysics models and associated infrastructure. The strength of the cGP toolbox as a relevant research tool will 
be illustrated by specific examples of use: 
● as an explorative tool for better understanding of key genetic concepts like dominance, epistasis, pleiotropy, 

penetrance and expressivity in biologically realistic complex trait situations and in a patient-specific 
perspective; 

● to elucidate the fine structure of the distribution of individuals in a high-dimensional phenotypic landscape 
associated with a pathological condition as a function of genetic variation; 

● as a test bed for developing new fine mapping methodologies within statistical genetics aimed at exploiting 
high-dimensional phenotypic information. 

The cgptoolbox is a step towards providing computational tools for attaching GP maps of parameters to a 
multiscale modelling framework in order to handle patient-specific issues. We think this is an important delivery 
preparing for a future situation where acquisition of high-dimensional phenotypic data from patients become 
routine [4] and the VPH community has come closer to its key goal of achieving more integration across multiple 
spatial and temporal scales. 

Design philosophy 

The workflow illustrated in the figure at 
left exemplifies the design pattern we 
developed to facilitate the interchange and 
reuse of its components: the generation of 
genotypes (e.g. exhaustive enumeration or 
reduced designs), the mapping of genes to 
parameters (based on genome databases, 
e.g. the mouse phenome project [5], 
physiological models (e.g. the CellML [6] 
and SBML/BioModels [7] repositories) 
that map parameters to phenotypes, virtual 
experiments to generate phenotypes that 
are defined by the model system's response 
to some stimulus or perturbation 
(e.g.voltage clamping), and aggregation 
from model dynamics to clinically relevant 
phenotypes (e.g. action potential duration). 
This pipeline design allows the gluing 
together of appropriate tools for each task. 
For instance, experimental designs and 
statistical analyses were done in R (www.r-

                                                      
1
 http://www.vph-noe.eu/vph-repository/doc_download/13-vph-noe-promotional-flyer-v1 

 
Simulation pipeline for causally cohesive genotype-phenotype studies. Blue 
arrows denote functions that generate genotypes or transform them through 
successive mappings, genotype to parameter to "raw" phenotypes to aggregated 
phenotypes. The surrounding text exemplifies different alternatives for each piece 
of the pipeline. Virtual experiments interact with physiological models to generate 
phenotypes defined by the system's response to external stimuli. 



project.org), whereas virtual experiments were flexibly described in Python (www.python.org). The general 
approach should apply equally well to eventual whole-organ cGP studies. 

cgptoolbox key components 

● Using simuPOP [8] for virtual genome data structure, locating genes and markers on chromosomes, keeping 
track of physical and genetic map units, and providing slots for user-defined parameter data, which can be 
accessed by the physiological models. simuPOP also includes meiosis, taking into account chromosomal 
arrangement and recombination rates for both markers and functional genes, and functions for dealing with 
population structure and observed or model-generated pedigrees. 

● Using Biopython to import genomic data from public databases (e.g. the HapMap project and Entrez 
databases such as SNP and Gene) into virtual genomes. 

● Core functionality for doing population-level simulations combining structural genome dynamics (keeping 
track of recombination, allele frequencies and haplotype block structures) with cGP models (in addition to the 
traditional GP models from quantitative genetics). The software will be designed to be modular such that cGP 
models and pedigree structures can be easily changed. Examples will span the range from cellular models in 
CellML (see below) to whole-organ simulations of continuum dynamics using openCMISS. 

● Routines for turning CellML models into cGP models. This will be done with as little manual work as 
possible, with automatic download from the CellML repository and integration using the CVODE solver. 

● Design patterns for virtual experiments that interact with physiological models to generate phenotypes 
defined by the system's response to external stimuli. For instance, a given pacing protocol can be applied to a 
whole class of heart cell models. 

● Setting up simulations based on publicly available genomic data from the HapMap project and Entrez 
databases such as SNP and Gene, using Biopython. 

● Export routines to data formats for state-of-the-art quantitative genetic software for doing heritability 
estimates, haplotype block detection and genome-wide association studies. 

● Convenient packaging into tasks that can be run trivially in parallel on computer clusters, automatically 
consolidating results as they become available. 
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