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Focused Ultrasound Surgery (FUS) has become a frequent tool for non-invasive benign tumour therapy with
FDA clearance for the treatment of fibroadenoma in the uterus and obtained CE mark for sonication of
bone metastasis. Other tumours are under preclinical (prostate, kidney) and clinical (breast, brain and liver)
evaluation. However, FUS is still challenging in terms of reliable therapy planning, monitoring and outcome
prediction especially in moving organs with a complex blood supply. The processes involved in FUS are
multi-level (ranging from organ morphology, perfusion and motion, down to microscopic and cellular level)
and not well understood. To improve this situation, a multi-level model for moving abdominal organs for the
use with Magnetic Resonance-guided FUS (MRgFUS) will be developed and evaluated within the FUSIMO
project. One key component is the abdominal organ motion model to simulate patient-specific motion. Purely
tracking the tumour is not sufficient for FUS, where absorbing and reflecting structures (e.g. bones, gas) can
cause thermal injury to neighboring tissue [1, 2]. Observation of the motion for all structures of interest
requires real-time 4D image acquisition and processing, which is currently impossible. However, incomplete
observations (surrogates) during therapy can be used in conjunction with prior information to provide complete
3D information of the organ. Patient-specific [3, 4, 5, 6] and population-based [7, 8, 9, 10, 11] respiratory
motion models have been proposed for this purpose.

Population models are built by gathering data from a number of volunteers or patients. Consequently, the
common structures within different subjects are registered and the variance in their location is modeled. A
patient-specific approach, on the other hand, adapts to a specific patient using data acquired either through
a pre-operative planning session, or shortly before therapy. However, no direct comparison between the
performance of population models and patient-specific models has yet been published. In this study, we have
investigated the benefit of a patient-specific model by observing the respiratory motion of a patient during a
short period before MRgFUS, over the use of a population model.

In our experiments we used 4DMRI [7] data acquired from 12 healthy volunteers (equal number of males
and females and an average age of 31). The 4DMR images consist of 25-30 slices taken during the course
of 45-70 mins with a temporal resolution of 290-410ms. The liver deformation between the MR volumes
were computed using an intensity-based non-rigid registration [7]. To set up inter-patient correspondences,
a number of anatomically and biomechanically corresponding landmarks were manually annotated for each
patient. By performing a cubic interpolation between these landmarks, the positions of 290 corresponding
points in the liver, in addition to 249 points on the surface of the liver were obtained [7]. In the FUSIMO
project, ultrasound is used to provide surrogates by tracking visible structures. We assumed in this study that
these surrogates include a point on the diaphragm, the entrance point of the portal vein into the liver, and a
point in the center of the liver defined by vessel features. To evaluate the benefit of building a patient-specific
respiratory model, we used the first 3-5 minutes of the 4DMR images of the subject, typically consisting of
27-84 respiratory cycles.

Von Siebenthal et al. [7] observed a change in exhale position over time (called drift) in addition to the
respiratory motion. Arnold et al. [11] showed the benefit of compensating also for this drift besides the
prediction of the respiratory motion. Similarly, we have decomposed the displacement of points in the liver
into respiratory and drift components. The drift component is defined as the difference in the position of a



point at its most recent exhale from a reference exhale state. The respiratory motion is the displacement of a
point with respect to its most recent exhale state. The exhale state in each cycle is defined as the local maxima
of the superior-inferior component of the motion trajectory. We have applied the same decomposition for the
surrogate signals during therapy, where each component of the surrogate is used to predict the respective
component of the motion vector. Finally, we constructed the motion vector by adding the two predicted
components. Since the drift is only considerable in relatively long periods of time (15-20 mins), one has to
rely on population data for modeling it. Hence, for predicting the drift, we have used a similar approach as
von Siebenthal et al. [7] for building a population model.

To predict the respiratory motion, we built two different models, namely a population and a patient-specific
one. First, we constructed 3N x T" motion matrices for each subject in the population, where N is the number
of points in the liver and T is the number of time steps. Next, we combined these matrices to form a 3N x T'M
matrix which includes the respiratory motion data of the M subjects in the population. Finally we built the
population model by applying PCA on this matrix and saving the resulting eigenvectors and eigenvalues. To
build patient-specific models, we formed a 3N x ¢t data matrix by using the first ¢ time steps of the 4DMRI
sequence of the patient. Similarly to the previous method, we applied PCA on this data matrix. Having
created the motion models, we followed the method of Hug et al. [12], to predict the full respiratory motion
vectors from the partial motion vectors provided by the surrogates.

Average Over all Patients
mean 95th percentile
Initial Error (no Motion Model) 4.56 11.90
PCA Population Model 1.40 3.38
PCA Patient-Specific Model 1.18 2.97
Improvement by Patient-Specific Model | 16% 12%

Table 1: Tllustration of the local mean prediction error (mm) for the liver motion in leave-one-out experiments

Table 1 shows the average over all patients of the mean and the 95% prediction error of the temporal sequence
for leave-one-out experiments. The improvement can also be appreciated in Figure 1, which shows the spatial
distribution of the mean prediction error for patient 1 for the two methods.

In conclusion, we compared population PCA and patient-specific PCA methods for modeling and predicting
the respiratory motion of livers within a MRgFUS framework. The patient-specific respiratory model improved
the mean prediction error by 16%. Therefore the acquisition of a short 4DMRI sequence shortly before
MRgFUS is recommended.

References

[1] de Senneville BD, Mougenot C, Moonen CTW. Real-time adaptive methods for treatment of mobile organs by
MRI-controlled high-intensity focused ultrasound. Magn Reson Med. 2007;57(2):319-330.

[2] Tanter M, Pernot M, Aubry JF, Montaldo G, Marquet F, Fink M. Compensating for bone interfaces and respiratory
motion in high-intensity focused ultrasound. Int J Hyperther. 2007;23(2):141-151.



[mm]
[mm]

-80 -60 40 -20 0 20 40 60 80 100 -80 -60 40 20 0 20 40 60 80 100
[mm] [mm]

(a) (b)

Figure 1: Example slice showing local mean prediction error (radius of the red circles) for patient 1 using (a) the PCA
population model and (b) the PCA patient-specific model for respiratory motion

3]

Blackall JM, Ahmad S, Miquel ME, McClelland JR, Landau DB, Hawkes DJ. MRI-based measurements of respira-
tory motion variability and assessment of imaging strategies for radiotherapy planning. Phys Med Biol. 2006;51:4147.

Zhang Q, Pevsner A, Hertanto A, Hu YC, Rosenzweig KE, Ling CC, et al. A patient-specific respiratory model of
anatomical motion for radiation treatment planning. Med Phys. 2007;34:4772.

Liu X, Oguz I, Pizer SM, Mageras GS. Shape-correlated deformation statistics for respiratory motion prediction in
4D lung. In: SPIE Medical Imaging. vol. 7625; 2010. .

King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T. Thoracic respiratory motion estimation from MRI
using a statistical model and a 2-D image navigator. Med Image Anal. 2012;16(1):252—-264.

Von Siebenthal M, Székely G, Lomax A, Cattin PC. Inter-subject modelling of liver deformation during radiation
therapy. In: MICCAI. Springer-Verlag; 2007. p. 659—666.

Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H. Statistical modeling of 4D respiratory lung motion using
diffeomorphic image registration. IEEE T Med Imaging. 2011;30(2):251-265.

Klinder T, Lorenz C, Ostermann J. Free-breathing intra-and intersubject respiratory motion capturing, modeling,
and prediction. In: SPTE Medical Imaging. vol. 7259; 2009. p. 72590T.

He T, Xue Z, Xie W, Wong S. Online 4-D CT estimation for patient-specific respiratory motion based on real-time
breathing signals. In: MICCAI. Springer; 2010. p. 392-399.

Arnold P, Preiswerk F, Fasel B, Salomir R, Scheffler K, Cattin P. 3D organ motion prediction for MR~guided high
intensity focused ultrasound. In: MICCAI. Springer; 2011. p. 623-630.

Hug J, Brechbiihler C, Székely G. Model-based initialisation for segmentation. ECCV. 2000;p. 290-306.



