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Introduction
Developmental, physiological and pathological processes in life sciences involve components 
spanning a wide range of length scales, from biomolecules to organs, as well as time scales, from 
nanoseconds to days. Experimental techniques can only partially elucidate the complex interplay 
among these spatial and temporal scales, providing many opportunities for computational research to 
complement experiments. Computational methods based on interacting particles, so-called particle-
methods, provide a simple yet robust  and unifying framework capable of studying phenomena 
spanning from the molecular level to tissue and organism scale.

Using particle-methods, we investigate a set  of biological problems which are relevant  to 
morphogenesis and span a wide range of temporal and spatial scales (Fig. 1). At  the molecular scale, 
we study glycocalyx dynamics and nanoparticle transport through the cell membrane. At the 
mesoscale, we present  stochastic and deterministic reaction-diffusion systems and address cell level 
dynamics including signaling, growth and migration. At the macroscale, we report on a model for 
tumor growth and tumor induced sprouting angiogenesis.
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Figure 1: Simulations spanning multiple scales

Methods
Particle methods subdivide a complex system into discrete elements, the so-called particles.  The unit 
of discretization can range from atoms to groups of cells. In the problems we study, the system size 
usually ranges from hundreds to millions of particles. For such large systems, it  is not  possible to 
obtain analytical solutions for the equations of motion; therefore, the system dynamics is solved 
numerically using computational approaches. The particle-environment and particle-particle 
interactions are defined through mathematical formulations that  reproduce the key physical features of 
the system [1].

We developed multiple methods to solve those equations efficiently and accurately. We heavily rely on 
high performance computing to distribute the workload among thousands of processors, resulting in 
critical acceleration of the simulations. The computational techniques and related life science 
problems are the following: all-atom molecular dynamics (AA-MD) for glycocalyx, coarse-grained 
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molecular dynamics (CG-MD) for membrane permeation of nanoparticles, sub-cellular element  model 
(SEM) for single cell dynamics and cell migration, continuum particle method (CPM) for 
morphogenesis and angiogenesis, and stochastic simulation algorithms (SSA) for pattern forming 
reaction diffusion systems and tumor growth.

The AA-MD and CG-MD simulations share the core theoretical background [2]. Both consist  of 
solving the Newtonian equations of motion that  govern the time evolution of a many-body system. 
The main difference is that  in AA-MD, each particle represents an atom, while in CG-MD, each 
particle represents a cluster of atoms or a molecule. Coarse graining is needed to reach larger time 
scales inherent to relevant medical phenomena such as cellular uptake of nano-medicine.

The SEM simulations are used to model whole cells.  In the SEM approach, each cell is modeled as an 
aggregate of soft sphere objects interacting through short range potentials. Here, the particles 
discretize a sub-volume of the cell’s cytoskeleton and are parametrized to reproduce the overall 
viscosity and mechanical response of tissue [3].

The CPM simulations solve partial differential equations by discretizing them using particles with 
overlapping kernel functions. Particles methods can be used to handle complex, deforming shapes and 
model their dynamics [4,5]. Furthermore, these methods can be coupled to particles representing 
discrete entities like single molecules or cells [6].

SSA is used to model stochastic effects in systems of chemical kinetics when the number of molecules 
is low. In its classic formulation, SSA can only treat  a single reaction event per time step. This can be 
computationally expensive for large systems as appear in reaction-diffusion systems. τ-leaping can 
accelerate such processes by firing several reactions per time step. In the context of reaction-diffusion 
processes, accelerated techniques like spatial τ-leaping and hybrid τ-leaping have been developed [7].

Applications

The flexibility of the particle-methods framework amongst  spatial and temporal scales enables the in 
silico analysis of a plethora of biologically relevant systems in areas where in vivo  investigations can 
be intrusive, cumbersome, expensive or even potentially life-threatening.

The use of molecular dynamics techniques allows zooming at the molecular scale, where we have 
developed the first  atomistic model of the glycocalyx, based on structural knowledge and homology 
modeling. We study its conformation and orientation under blood flow induced shear and the forces 
mediated by it  on the supporting lipid bilayer. The permeability of nanoparticles through 
phospholipids bilayers is investigated using coarse-grained molecular representations.

At the cellular level, we employ the SEM to capture the viscoelastic properties of interacting cells. The 
method has been extended to account for growth, proliferation, migration and cell-cell mediated 
signaling. We apply the extended method to investigate the influence of mechanical stimuli on organ 
growth. In particular, we study phenomena observed experimentally in fruit  fly wing disk development 
and sepal growth. Furthermore, we study cell migration and signaling in the context  of cancer cell 
invasion and in vitro wound healing experiments.

CPM simulations are employed to study phenomena at different  spatial scales. We investigate 
reaction-diffusion processes both inside and on surfaces as observed on the endoplasmic reticulum [8].  
At larger scales, we couple pattern forming reaction-diffusion systems to tissue deformation and 
growth models. The methods are applied to study organogenesis, tumor formation and plant growth 
[1,4]. In the context of tumor induced angiogenesis, we couple the CPM to discrete particles 
representing single migrating tip cells. The extracellular matrix and growth factors are modeled as a 
continuum and govern the migration path of tip cells [6].

Finally, we use stochastic spatial and hybrid τ-leaping to simulate pattern forming reaction diffusion 
equations of morphogenesis [7]. Tumor growth via dissemination and proliferation of cells as in 
glioma is modeled using stochastic differential evolution with Brownian motion [1].
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Conclusion 
Morphogenesis consists of a multitude of biophysical and chemical processes, spanning a broad range 
of length and time scales. Each of these processes operates locally at their own time scale, but 
collectively contribute towards the emergence of morphogenesis. Under the unifying framework of 
particle methods, a rigorously validated and physically sound modeling of the aforementioned 
processes can be achieved. Unlike grid-based methods, particle methods are local and free from shape 
restrictions. They can easily provide a basis for hierarchical coarse graining using a bottom-up 
approach in order to robustly calibrate and assess their predictive capabilities. At the same time each 
application can still be decoupled and refined independently if needed.

We envisage that our massively parallel computational tools for multiscale modeling of 
morphogenesis will continue to benefit  from advances in high performance computing. This will 
enable the study of more detailed and complete systems. We take on the challenge of coupling and 
calibrating such processes with relevant examples being in the field of drug delivery and tumor 
growth.
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