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Abstract- Modelling of the diffusive-invasive behaviour of glioma tumour growth is an active field of Virtual 
Physiological Human (VPH) research with considerable therapeutic implications. A crucial component of the 
corresponding computational problem is the numerical handling of the adiabatic Neumann boundary conditions 
imposed by the skull on the diffusive growth of gliomas and in particular glioblastoma multiforme (GBM). In 
order to become clinically acceptable such a numerical handling should ensure that no potentially life-
threatening glioma cells disappear artificially due to oversimplifying assumptions applied to the simulated region 
boundaries. However, to the best of the authors’ knowledge no explicit numerical treatment of the 3D boundary 
conditions under consideration has appeared in the literature. Therefore, this paper aims at providing an outline 
of a novel, explicit and thorough numerical solution to this problem. Additionally, a brief exposition of the 
numerical solution process for a homogeneous approximation of glioma diffusion-invasion using the Crank – 
Nicolson technique in conjunction with the Conjugate Gradient system solver is outlined. The entire 
mathematical and numerical treatment is also in principle applicable to mathematically similar physical, 
chemical and biological phenomena. A comparison of the numerical solution for the special case of pure 
diffusion in the absence of boundary conditions with its analytical counterpart has been made. In silico 
experimentation with various adiabatic boundary geometries and non zero net tumour growth rate support the 
validity of the corresponding mathematical treatment. Through numerical experimentation on a set of real brain 
imaging data, a simulated tumour has shown to satisfy the expected macroscopic behaviour of glioblastoma 
multiforme including the adiabatic behaviour of the skull. The expected GBM macroscopic behaviour has been 
based on concrete published clinical imaging data. The paper concludes with a number of remarks pertaining to 
the potential and the limitations of the diffusion-reaction approach to modelling multiscale malignant tumour 
dynamics. 

  I. INTRODUCTION 
Glioblastoma multiforme (GBM) is a very aggressive glioma and a classical example of a highly invasive and 

diffusive tumour. GBM cell diffusion in the brain is a reasonable first approximation of the migration of glioma cells 
along structures such as the basement membranes of blood vessels or the glial limitans externa that contain extracellular 
matrix (ECM) proteins. Frequentlty, invasive glioma cells are also found to migrate along myelinated fiber tracts of 
white matter. Due to its markedly diffusive character, a significant component of the tumour cannot be delineated based 
on standard tomographic imaging techniques such as CT, MRI and PET. This constitutes an important limitation to the 
optimal design of both surgical excision and therapeutic irradiation of the tumour. In order to partly alleviate the 
problem, mathematical modelling of diffusive tumour growth has been proposed. To this end a number of diffusion-
reaction based models dealing primarily with the morphology of tumour growth have been developed [1 – 3].  

According to the diffusion-reaction based approach, the tumour is considered a spatiotemporal distribution of 
continuous cell density which follows the general diffusion-reaction law. The macroscopic formulation of diffusion, 
leads to a partial parabolic differential equation. A single tumour cell may constitute the initial tumour within a three-
dimensional medium. Tumour growth can be expressed by the following statement [1,2]: 
Rate of change of tumour cell population= diffusion (motility) of tumour cells + net proliferation of tumour cells - loss 

of tumour cells due to treatment 
In the case of glioma, the simulated region of interest may include part of the skull. The latter acts as an adiabatic 

boundary for the diffusion of the brain tumour, precluding migration beyond it. As a result, the mathematical treatment 
of the biophysical processes taking place in the vicinity of anatomic boundaries must satisfy specific constraints. Zero 
flux boundary conditions have to be applied on the anatomic boundaries of the skull surface. Thus if ߗ is the brain 
domain on which the diffusion equation is to be solved the previous statement can be symbolically formulated through 
the following differential equation [1]: 
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The variable ܿ denotes the cell concentration at any spatial point defined by the position vector  ⃗ݔ and time ݐ.  The 
parameter ܦ denotes the diffusion coefficient and represents the active motility of tumour cells. The term ߩ represents 
the net rate of tumour growth including proliferation, loss and death, ො݊ is the unit vector normal to the boundary ߲ߗ	of 
the domain ߗ and ݂(⃗ݔ) is a known function that defines the initial spatial distribution of malignant cells. The term (ݐ)ܩ 
accounts for the temporal profile of treatment and as a first facilitating approximation (ݐ)ܩ = ݇ may be assumed 
constant. The latter may crudely model a continuous administration of radiation e.g. through special radioisotope based 
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implants. A more realistic assumption is to assign (ݐ)ܩ different values for different time intervals reflecting various 
chemotherapeutic and/or radiotherapeutic schedules. The simulation domain ܴ of which  ߗ	is a subdomain is defined 
as:                                                                                                                                                

                  ܴ = ,ݔ)} ,ݕ ܽ|(ݖ < ݔ < ܾ, ݏ < ݕ < ݀, ݁ < ݖ < ݂}                                                 (2) 

II.   EXPLICIT NUMERICAL FORMULATION OF THE  BOUNDARY CONDITIONS 
The diffusion component of the problem is numerically solved using the Crank Nicolson numerical method in 

conjunction with the conjugate gradient method. The glioma invasion problem involves an irregularly shaped domain. 
Therefore, a biologically meaningful solution has to allow for the investigation of a wide range of elementary local 
domain geometries.  Several specific cases have been examined in order to address the geometry of the irregularly 
shaped skull boundary. For each boundary mesh node (lying at the center of the multi-grey level structure of Fig.1 (and 
therefore not visible) all its 6 adjacent nodes (lying 
towards all the ݔ+, ,−ݔ ,+ݕ ,−ݕ ,+ݖ ݖ − directions) 
are considered in order to numerically apply the 
boundary condition on it i.e. on (ݔ௜ , ௝ݕ ,   ௞)  [4]ݖ

The boundary condition according to Eq.1 is: 
                 ො݊ ∙ ܿ∇ܦ =  (2)                          ߗ߲			݊݋				0
In order to evaluate the boundary condition for each 
grid point (ݔ௜ , ௝ݕ ,  and maintain the block	௞)ݖ
tridiagonal structure of the coefficient matrix ⃡޿	 of 
the resulting linear system of algebraic equations  Α⃡	xሬ⃗ = 	 bሬ⃑  and the second-order accuracy of the approximation we 
introduce a “fictitious node” into the computational grid. The “fictitious node” produces an extra row of unknowns in 
the computational grid. Evaluating the boundary condition at each boundary grid point (ݔ௜ , ௝ݕ ,  ௞) yields six equationsݖ
mathematically similar (but not identical) to the equation corresponding to the following case: 
At the boundary grid point (ݔ௜ , ௝ݕ , ݔ direction ݔ ௞) in the negativeݖ −: 
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where ܨ௜,௝,௞  denotes a fictitious node. 
The total number of the different cases of nodes having boundary node(s) as their neighbour(s) that have been 

considered is 26. This has led to the formulation of 26 algebraic equations mathematically similar (but not identical) to 
Eq. (4).  An appropriate equation out of the set of these 26 equations is used for any index triplet (݅, ݆, ݇) belonging to 
the boundary. By fixing indices ݅, ݆, ݇	to specific values, the 26 equations can produce all elementary boundary 
arrangements encountered in the case of an arbitrarily shaped boundary. An indicative case and equation is the 
following: 
At the boundary grid point (ݔ௜ , ௝ݕ ,  :direction ݔ ௞)  where the skull lies only in the positiveݖ
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 III.  NUMERICAL EXPERIMENTS 
In order to test the numerical schemes implemented for solving Eq. (1) and support the correctness of the overall 

mathematical treatment presented, a number of pertinent computational scenarios have been executed. They have 
included inter alia: numerical checks regarding convergence and stability of the algorithm and the code, checks 
regarding mass conservation and linearity for the theoretical case of pure diffusion, comparison of the model with the 
analytical solution to the special case of an initial Gaussian cell concentration profile, spatial symmetry studies for 
simple symmetric geometries and numerical validation of the adiabatic behaviour of the boundary implementation.  

 IV  CLINICAL VALIDATION ASPECTS 
Several snapshots of a growing virtual glioblastoma tumour corresponding to various time points are depicted in 

Fig. 2. It is noted that although the internal anatomy of brain is visible in the panels of this figure, homogeneous 
diffusion of tumour cells has been assumed within the skull cavity as a first approximation. The concentration of 
tumour cells within the initial simulated tumour has been arbitrarily assumed uniform and equal to 10଺	cells/	mmଷ. The 
following parameter values have been used: diffusion coefficient D = 0.0065 cmଶ d⁄ , [1],  h = 0.2	cm,  Δt = 0.5	d , 
and net tumour growth rate ρ = 0.012	dିଵ.  [1]  It should be noted that the gross spatial pattern of glioblastoma growth, 
especially in the vicinity of the skull boundary, is in very good agreement with actual published clinical observations [5-
6]. The diameter of a sphere with volume equal to a glioblastoma tumour of fatal imageable dimensions is about 6 cm. 
[1] The latter corresponds to a volume ௙ܸ௔௧௔௟  of 113.04	cmଷ. In order for the tumour to increase in imageable volume 
from ௙ܸ௔௧௔௟ 2⁄  to ௙ܸ௔௧௔௟ , 26 days are needed according to the simulations. This approximation to doubling time is in 
good agreement with the clinically reported glioblastoma doubling time in [7]. It is noted that in order to avoid a 
somewhat artificial diffusion behaviour during the first simulated days which would be dictated by the deliberately 
assumed abrupt boundaries of the initial tumour, the first 14 simulated days have not been taken into account in the 
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theoretical estimation of doubling time.  A typical execution instance of the code for 6 simulated months, ݐ߂ = 0.5݀ 
and for descritized mesh 130x130x130, on a 32-bit Windows Vista Platform, 4 GB RAM and processor Intel® Core™2 
Duo CPU P8600 @ 2.4GHz, takes 214 sec. Further acceleration of the code execution could be achieved by using high 
performance computing resources. 
           V. CONCLUSIONS 

A novel explicit numerical 
treatment of the boundary 
conditions to be used in 
conjunction with a homogeneous 
diffusion - reaction based glioma 
growth model has been presented. 

 Systematic checking of the 
corresponding computer code  
based on numerical simulations 
for various adiabatic boundary 
geometries, zero and non zero net 
tumour growth rate and zero and 
non zero loss rate due to treatment have supported the validity of the corresponding mathematical treatment. Numerical 
experimentation on a set of real brain imaging data has demonstrated that a simulated glioblastoma tumour can satisfy 
the expected macroscopic behaviour of its real counterpart, including the adiabatic behaviour of the skull.  The detailed 
treatment of the boundary conditions presented could considerably contribute to the accuracy of the solution to the 
diffusion-reaction equation in particular for glioblastoma tumours having their main bulk close to the skull. The 
composite model proposed appears to have the potential to correctly predict clinically meaningful and measurable 
quantities of critical importance related to the course of the disease, such as the imaging based doubling time. 
Obviously a strict clinical adaptation and validation procedure is a sine qua non requirement before clinical translation 
is envisaged. Additionally, translation or extension of the analysis presented to mathematically similar physical systems 
is a possibility. Extension to both inhomogeneous and anisotropic glioma diffusion is pretty straightforward. It should 
be noted, however, that although the continuous - finitized approach partly delineated in this paper appears to be a good 
choice for pure tumour growth-invasion-diffusion modelling, it seems not to be ideal for the integration of the massive 
multiscale biological complexity that is necessary in order to study in depth tumour response to treatment. Discrete 
entity – discrete event based approaches [8-11] on the contrary have demonstrated considerable integrative potential in 
the context of cancer response o treatment due to the discrete character of many biological entities and features involved 
in this domain ( e.g. discrete cell categories based on their mitotic potential such as stem cells, progenitor cells, 
differentiated cells; discrete cell cycle phases generally characterized by differing treatment sensitivities; discrete 
character of cell state transitions  etc.). Nevertheless, both continuous/finitized and discrete approaches are important 
for the development [10] and the clinical translation [12] of the emerging oncosimulators [10]. 
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