
A Tool for Training Effective Classifiers in the Small Sample Setting
Davide Anguita, Alessandro Ghio, Luca Oneto, and Sandro Ridella

DITEN, University of Genoa

Correspondence: Alessandro Ghio, Alessandro.Ghio@unige.it, +39-010-3532192, Via Opera Pia 11A, I-16145,
Genoa, Italy

Abstract
We present in this work a MATLAB software tool, allowing to perform the learning phase of Support

Vector Machine classifiers. Thank to the exploitation of innovative statistical methods, the models, trained
and selected by the tool, result to be particularly effective in the small sample setting, i.e. when few high-
dimensional data are available (e.g. in bioinformatics problems).

1 Support Vector Machine: Model Selection in the small-sample setting

The Support Vector Machine (SVM) algorithm [1], whose solid theoretical foundations date back to the devel-
opment of the Statistical Learning Theory [1], represents one of the state-of-the-art techniques for classification
problems and is widely used in real-world applications. The linear SVM is a classifier of the following form:

f(x) = wTx+ b (1)

where the weights w and the bias b are the parameters of the model. These parameters are computed during the
learning phase using a training set Dn ∈ Rn×d, consisting of n d-dimensional samples. In addition to the set
of parameters (w, b), the SVM algorithm requires the tuning of some hyperparameters, which noticeably affect
the classifier performance. This tuning is not part of the training and is known as the model selection phase.

The problem of model selection is generally linked to the estimation of the generalization ability of a classi-
fier, i.e. the ability of a model to correctly classify previously unseen data. For this purpose, the Structural Risk
Minimization (SRM) principle [1] defines some basic steps for its estimation: (i) define a centroid ŵ; (ii) choose
a (possibly infinite) sequence of hypothesis spaces Fk, k = 1, 2, ..., where the classes of functions Fk describe
classifiers of growing complexity and are centered on ŵ; (iii) select the optimal model fo among the hypothesis
spaces by exploiting the following trade-off between overfitting and underfitting:

fo = arg min
f∈Fk,k∈1,2,...

C(f,Fk) = arg min
f∈Fk,k∈1,2,...

[
L̂n(f) + pen(Fk)

]
. (2)

The first complexity term L̂n(f) is the empirical risk or, in other words, the misclassification rate of f on Dn.
It is well–known that the minimization of the empirical risk alone can lead to overfitting, if the hypothesis space
is too large, but this tendency can be counterbalanced by pen(Fk), which penalizes complex models.

In the conventional SVM formulation, the hypothesis space is usually (and arbitrarily) centered in the origin
(ŵ0 = 0), because, in general, there is no a–priori information leading to a better choice [2]. This choice,
however, severely influences the sequence Fk and has a detrimental effect on the model selection of SVM
classifiers. Thus, we proposed some techniques that allows to select a “good” centroid ŵ [2, 3] and to center
a sequence of hypothesis spaces around it [2], so to better explore the classes of functions for model selection
purposes. In order to estimate the complexity of the hypothesis space, captured by the penalty term, we make
use of the Rademacher Complexity (RC) [4] and the Maximal Discrepancy (MD) [5] techniques, which are two
statistically rigorous approaches that can be effectively used in practice [6]. These methods allow us to perform
an effective model selection, especially when applied to small sample problems, where the number of patterns is
small compared to the dimensionality of the problem [7, 8], that is where conventional out-of-sample methods,
such as the K-fold Cross Validation [9], are not reliable [10, 11].

Based on these results, we realized a MATLAB routine1 for training effective and reliable classifiers in
the small sample setting, e.g. in microarray classification problems. The Small Sample SVM (SS-SVM) soft-
ware, briefly detailed in the next Section, receives as input that the main characteristics of the experiment to be
performed: the output of the software consists in the trained model, which can be used to classify new samples.

1The tool will be soon available for downloading at http://smartlab.ws and will be distributed under the terms of the GNU General
Public Licence (GPL).

1

2 The SS-SVM tool

The SS-SVM tool allows to perform a complete SVM learning. As the RC and MD techniques are used for
model selection purposes, the software is mainly targeted towards small sample problems, though it can also
be used in other SVM training frameworks. The program SS-SVM is invoked by the command line SSSVM
(parameters), where the parameters contain all the information needed by SS-SVM to perform its job.
What follows is a brief and simplified list of the parameters (for a complete list, please refer to the tool user
guide):

• The matrix containing the training data and their labels;

• A flag, indicating whether the normalization in the [0, 1] range must be applied;

• The range for the hyperparameter(s), exploited by the method. In particular, a grid search approach is
used to exhaustively explore the hyperparameter(s) space [9];

• The method for selecting the centroids of the class of functions. The user can select between two tech-
niques: using further unlabelled examples [3] or exploiting the algorithm proposed in [2];

• The method to be used for model selection purposes (MD or RC). Note that, depending on the chosen
method, further parameters should have to be set;

• The number of Monte Carlo replicates to estimate MD or RC (e.g. refer to [2] for further details).

The output of the tool consists in the SVM model, which can be used to classify new samples (e.g. test data):
the function SSSVM feed, which implements the classifier of Eq. (1), can be invoked for this purpose.

3 Experimental Results

We propose some results, obtained by exploiting the SS-SVM software on Human Gene Expression (HGE)
datasets: due to space constraints, we do not report here the complete list of references for the datasets, which
can be retrieved in [2]. Our objective is to compare the performance of the model, selected and trained through
SS-SVM, against the classifier obtained with the K-fold Cross Validation (KCV) method [9], which is consid-
ered one of the state-of-the-art approach to the SVM model selection problem: for this purpose, we reproduce
the methodology used by [13], which consists in randomly generating 5 different training/test pairs using the
available data. The experimental setup is the following:

• the data are normalized in the range [0, 1];

• the approach proposed in [2] is exploited for selecting the centroids;

• the remaining samples are used for model selection purposes through the MD and RC approaches;

• the error rates of the optimal models, chosen by the different approaches, are then computed on the test
set.

Table 1 presents both the characteristics of the dataset (where d is the number of variables and n is the
number of data for training the classifier) and the average number of errors, performed by the models on the 5
randomly sampled test sets. The results clearly show that the classifiers, selected with SS-SVM (in particular,
when the Rademacher Complexity technique is used), are effective in most of the cases (9 datasets out of 13).
Note that a more thorough analysis will be proposed in a forthcoming paper [12], where further results are
obtained comparing numerous model selection approaches on several datasets, also in the very small-sample
setting (n = 10).

4 Conclusions

We presented in this work a MATLAB software tool for the Support Vector Machine classifiers learning. In
particular, for model selection purposes, Rademacher Complexity and Maximal Discrepancy based techniques
are exploited, making the tool particularly appealing with respect to conventional approaches when the user
targets small sample problems.

2

Table 1: Average number of errors on the test sets of the HGE datasets.
Dataset d n KCV SS-SVM MD SS-SVM RC
Brain 1 5920 90 5.5± 0.5 5.4± 0.3 5.6± 0.3
Brain 2 10367 50 2.8± 0.5 0.0± 0.0 0.4± 0.6
Colon 1 22283 47 8.7± 0.7 5.4± 0.3 5.0± 0.0
Colon 2 2000 62 8.7± 0.0 6.0± 0.0 4.0± 1.0
DLBCL 5469 77 7.6± 0.3 5.4± 0.3 5.4± 0.3
Breast 7129 44 6.6± 1.2 5.0± 0.2 5.0± 0.2
Leukemia 7129 72 5.0± 0.0 5.0± 0.0 5.0± 0.0
Leukemia 1 5327 72 9.8± 0.2 9.0± 0.0 8.2± 0.2
Leukemia 2 11225 72 9.0± 0.7 8.0± 0.0 8.0± 0.0
Lung 12600 203 7.2± 0.1 14.4± 0.3 14.4± 0.3
Myeloma 28032 105 0.0± 0.0 6.8± 0.2 6.8± 0.2
Prostate 10509 102 10.9± 1.7 6.8± 0.2 6.6± 0.2
SRBCT 2308 83 7.6± 0.5 6.8± 0.2 6.6± 0.2
best 3 6 9

References

[1] V.N. Vapnik, “The nature of statistical learning theory”, Springer Verlag, 2000.

[2] D. Anguita, A. Ghio, L. Oneto, S. Ridella, “Selecting the Hypothesis Space for Improving the General-
ization Ability of Support Vector Machines”, Proc. of the IEEE Int. Joint Conference on Neural Networks
(IJCNN), pp. 1169–1176, S. Jose, USA, 2011.

[3] D. Anguita, A. Ghio, L. Oneto, S. Ridella, “The Impact of Unlabeled Patterns in Rademacher Complexity
Theory for Kernel Classifiers”, Advances in Neural Processing System (NIPS), Granada, Spain, 2011.

[4] P.L. Bartlett, S. Mendelson, “Rademacher and Gaussian complexities: Risk bounds and structural results”,
Computational Learning Theory, pp. 224–240, 2001.

[5] P.L. Bartlett, S. Boucheron, G. Lugosi, “Model selection and error estimation”, Machine Learning, vol. 48,
pp. 85–113, 2002.

[6] D. Anguita, A. Ghio, S. Ridella, “Maximal Discrepancy for Support Vector Machines”, Neurocomputing,
vol. 74, pp. 1436–1443, 2011.

[7] M. Girolami, H. Mischak, R. Krebs, “Analysis of complex, multidimensional datasets”, Drug Discovery
Today: Technologies, vol. 3, pp. 13–19, 2006.

[8] A. Statnikov, I. Tsamardinos, Y. Dosbayev, C.F. Aliferis, “GEMS: A System for Automated Cancer Diag-
nosis and Biomarker Discovery from Microarray Gene Expression Data”, International Journal of Medical
Informatics, vol. 74, pp. 491–503, 2005.

[9] C.W. Hsu, C.C. Chang, C.J. Lin, “A practical guide to support vector classification”, Technical report, 2003.

[10] U.M. Braga–Neto, E.R. Dougherty, “Is cross-validation valid for small-sample microarray classification?”,
Bioinformatics, vol. 20, pp. 374–380, 2004.

[11] A. Isaksson, M. Wallman, H. Goeransson, M.G. Gustafsson, “Cross–validation and bootstrapping are un-
reliable in small sample classification”, Pattern Recognition Letters, vol. 29, pp. 1960–1965, 2008.

[12] D. Anguita, A. Ghio, L. Oneto, S. Ridella, “In-sample and Out-of-sample Model Selection and Error
Estimation for Support Vector Machines”, IEEE Transactions on Neural Networks and Learning Systems,
in press, 2012.

[13] A. Statnikov, C.F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy. “A Comprehensive Evaluation of Multicat-
egory Classification Methods for Microarray Gene Expression Cancer Diagnosis”, Bioinformatics, vol. 21,
pp. 631–643, 2005.

3

