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Figure 2. Coverage of mechanistic axes by 1600 

VPs. In total, 23 pathways associated  with 

lipoprotein metabolism are explored. The range 

for each pathway is normalized between 0 and 1.

Figure 1. Overview of cholesterol submodel. Nodes 

correspond to  state variables or functions, and 

arrows correspond to relationships

Figure 1. Overview of cholesterol 

submodel. The nodes and arrows 

correspond to state variables and 

relationships respectively
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Introduction 

The use of mechanistic in silico modelling of integrated biological processes at a system-wide level is 

a growing discipline that can revolutionize the field of medicine. The realization of this potential will 

transform the process of therapeutic discovery and development to better align with that of modern, 

complex engineering products: iterative cycles of hypothesis and simulation-driven testing processes. 

Moreover, integrating disparate biological data, in a consistent manner, to constrain model behaviours 

and to create virtual patient phenotypes will be essential for delivering on the promises of personalized 

medicine. For any predictive modelling approach, a major consideration is how to incorporate 

variability seen in the data resulting from heterogeneity in the underlying physiology, genetic 

diversity, and lifestyle/environmental factors.   

Here we showcase the cardiovascular (CV) PhysioLab
®
 and associated tools that were developed and 

used for physiological modelling at Entelos
®
. The CV PhysioLab is a mechanistic, large-scale 

dynamical model of cholesterol metabolism, atherosclerosis, and CHD risk. We focus here on the 

components associated with cholesterol homeostasis (Fig.1.), explaining how a top-down mechanistic 

modelling approach incorporates in vitro and in vivo data, and constraints on ranges for physiological 

parameters. The concept of a virtual patient (VP) is introduced as a parameterization of the model that 

yields a specific phenotype – for example, dyslipidemics who are hyper- or hypo- responsive to 

HMGCoA inhibitiors (statins). A virtual population (VPop) is created to match reported lipoprotein 

values of patients in the Treat to New Targets (TNT) trial [1], and their response to atorvastatin 10 mg 

qd. The creation of a diverse VPop enables the interrogation of the different mechanisms that 

distinguish hyper- and hypo- statin responders. The potential for identifying predictive biomarkers 

using this approach is highlighted here, as well as in peer-reviewed journal articles using other Entelos 

models such as the Metabolism PhysioLab, and the Rheumatoid Arthritis PhysioLab
 
[2, 3].  

The cholesterol metabolism submodel of the CV PhysioLab
 
platform

 

The progression of 

atherosclerosis is 

hypothesized to be 

primarily driven by the 

balance between 

cholesterol retention and 

efflux from the vessel. 

This balance is dependent 

on the retention of 

circulating apolipo-

protein (apo) B100/LDL 

particles within the 

plaque and cholesterol 

efflux from the plaque 

and other tissues to 

apo- AI /HDL particles. 

The cholesterol metabolism submodel computes the dynamic equilibrium of apo B100 and apo A-I 

species in the circul-ation, in terms of both particle numbers and cholesterol content. The model 

outputs plasma lipoprotein values relevant to clinical measures such as total cholesterol (TC)  and 
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Figure 3. Each connected line is a profile 

of a VP (N = 1600) for 4 measures : 

PCSK9 (ng/ml) , LDL-C, HDL-C and TC 

(mg/dl) at baseline (top chart) and % 

changes in response to simulated 

atorvastatin 10 mg qd (bottom chart)
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Figure 4. Comparison of simulated Vpop lipoprotein measures (red) to those reported for 

TNT trial (black). The left plot shows means and standard deviations at baseline (washout) 

and right plot shows cumulative distribution for LDL-C on atorvastatin 10mg. 
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triglycerides (TG), and various sub-particle classes such as VLDL, IDL, LDL and HDL. Activity of 

key enzymes (CETP, LPL, HL, LCAT, PCSK9) and key receptors and transporters (LDLr, SR-B1, 

ABCA1) which contribute to processes such as synthesis, catabolism and remodelling of particles are 

included. The entire submodel is based on the conservation of mass balance, and incorporates known 

feedback mechanisms. Inter-individual variability in VPs arises due to variations in the mechanisms 

(Fig.2.) resulting in individual lipoprotein profiles and differing responses to therapeutic interventions 

(Fig.3.). In total, 23 mechanistic pathways or “axes” are explored (e.g. LPL activity on VLDL 

particles, apo B100 synthesis rates, PCSK9 half-life, etc). The effects of cholesterol interventions (e.g. 

statins, CETP inhibitors, cholesterol absorption blockers etc.) are modelled as perturbations to the 

appropriate pathways which result in changes to the lipoprotein values consistent with clinical data.         

Exploring model parameters and creating virtual patients and populations 

The generation of VPs is done through use of a genetic 

algorithm to explore the parameter space to generate feasible 

patients. For a given axis, the range within which the search is 

performed is derived from the literature, and can utilize in 

vitro and in vivo human and/or animal data. For example, 

VLDL1 apoB production in human can range from 3 – 16 

mg/kg/day [4]. The drivers of VLDL synthesis rates in the 

model are, therefore, sampled to cover this ~5 fold range. A 

VP is considered feasible if their computed VLDL cholesterol 

falls within the range reported in the literature. Using this 

methodology, VPs representing different model 

parameterizations are created to reproduce feasible clinical 

phenotypes and responses (Fig.3.). This is a process that often 

requires multiple iterations to cover the full desired range of 

measurements. VPs of a specific phenotype can be used to 

seed more explorations, and their progeny enrich the 

phenotypic and mechanistic space, leading to a diverse 

cohort, in this example, consisting of >1600 VPs.  

To adjust for any sampling bias of the feasible VPs returned 

by the genetic algorithm, and to ensure that the statistics of 

the generated VPs match clinical data, a prevalence weighting 

algorithm is used to assign a weight to each VP. This weight 

corresponds to the fractional contribution of a VPs phenotype 

to a specified population. Individual VP weights can be 

optimized to 

simultaneously 

match reported 

sample statistics 

such as means, 

standard deviations, 

distributions, and 

any known 

correlations, across 

multiple measures. 

In this test case, a 

cohort of >1600 

VPs was weighted 

to match reported 

TNT means and standard deviations of LDL-C, HDL-C, TC and TG at baseline (washout), as well as 

LDL-C distributions in response to simulated atorvastatin 10 mg qd (Fig.4.). In particular, VPs with 

LDL-C <130 mg/dL or > 250 mg/dL after washout are excluded. The VPs corresponding to the top 

and bottom deciles of LDL-C response to statin (fractional change) are selected for further analysis.    
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Figure 5. Distributions of  top and bottom 10% of Vpop on statin for 

fractional LDL-C change across each of the 23 mechanistic 

pathways. Statin hyper-responders, in red, and hypo-responders, in 

grey, are plotted (median and IQR) on a normalized range for each 

mechanism. Dark red denotes an overlap of the two subpopulations. 

Pathways where the medians are more separated and with little 

overlap may be associated with distinguishing the two groups.
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Exploring mechanistic pathways for statin hypo- and hyper-responders in VPop 

The mechanistic pathways that were 

explored in generating the VPs can be 

ranked to give a qualitative indication of 

their relative importance in distinguishing 

between hypo- and hyper- statin 

responders in the VPop, defined as the top 

and bottom deciles of fractional LDL-C 

response. One method of ranking these 

pathways is by looking for separations in 

the distributions of these two phenotype 

groups, or subpopulations within the 

VPop, across each mechanistic axis used 

in the model. A particular pathway may 

be implicated if there is a significant 

difference in probabilities. The plot in Fig. 

5 shows the results for our TNT VPop. 

Pathways in the model that are 

highlighted by the arrows show 

qualitative differences between the two 

subgroups. In general, poor statin 

response may be associated with higher 

PCSK9 levels, lower LDL receptor 

synthesis rates, differential CETP activity 

etc.   

Conclusion  

Mechanistic modeling of biological systems offers the opportunity to test hypotheses, and thereby 

manage risk, during multiple stages of the drug discovery process. Models that capture behaviour at 

the system-wide level, and which employ virtual patients and populations to explore uncertainty and 

diversity in underlying mechanisms are at a distinct advantage.   
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