
Drug Screening with Elastic-Net Multiple Kernel Learning

Kitsuchart Pasupa and Zakria Hussain and John Shawe-Taylor and Peter Willett

Abstract— We apply Elastic-net Multiple Kernel Learning
(MKL) to the MDL Drug Data Report (MDDR) database for
the problem of drug screening. We show that combining a
set of kernels constructed from fingerprint descriptors, can
significantly improve the accuracy of prediction, against a
Support Vector Machine trained on each kernel separately. To
the best of our knowledge, this is the first application of MKL
to the MDDR database for drug screening.

I. INTRODUCTION

The drug discovery process is a highly complex task,

expensive and time consuming. In order to reduce the cost

and time to launch a drug into the market, computational

modelling is used as a tool. One important technique in

this area is called “virtual screening (VS)”. It aims to score

molecules based on the probability of molecules being active

in a database, where a set of highly scored molecules will be

selected and moved on to the next stage of drug discovery.

The conventional and simplest method of VS is similarity

searching. It measures the degree of similarity between query

compounds and compounds in a screening database. Many

methods have been introduced for various descriptors and

similarity coefficients, e.g., RASCAL for graph-type [1],

LINGO for string-type [2]. To improve the search perfor-

mance, data fusion has also been introduced. It combines

data from multiple sources in order to improve on indi-

vidual results. However, the application of data fusion, is

sometimes impractical because the scores computed by the

different scoring functions and/or from different descriptors

are usually in different units and/or signs. Moreover, some

scoring functions have linear relationship to the others. Since

many descriptors have been introduced in the literature, we

will concentrate our work on fingerprint descriptors (binary-

valued data) only. We aim to improve the performance by

combining four different types of fingerprints.

Multiple Kernel Learning (MKL) was developed to help

combine kernels in a principled way [3]. Given a set of

kernels, researchers have developed a technique of using the

well-known Support Vector Machine (SVM) algorithm style

optimisation framework to pose a MKL problem. In this

work, our kernels will be constructed from four different

types of fingerprint descriptors, and we will show that by
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applying a linear kernel to these feature sets, that we can

improve predictive accuracy over that obtained using each

individual kernel. Furthermore, we will apply the Elastic-net

version of MKL which allows one to tune the level of sparsity

required for the choice of kernels, by using a weighted

combination of a 1-norm and 2-norm regularisation [4].

The paper is set out as follows. In Section II we describe

the background techniques of SVM and our MKL in detail.

Section III describes the database used in this paper, the

experimental setup and results. Finally, we conclude the

paper in Section IV.

II. METHODOLOGIES

MKL algorithms [3], [5], [6] are typically modifications

of the SVM algorithm [7], [8]. In the following two sections,

we describe the SVM and MKL algorithms we use for the

experiments.

A. Support Vector Machine

Let z = {(φ(x1), y1) , . . . , (φ(xm), ym)} be an m-sample

of input-output pairs where inputs φ(x) ∈ R
n are mapped

using the feature mapping φ and y ∈ Y = {−1,+1}. Let

w ∈ R
n be an n-dimensional weight vector and let ξ ∈ R

m

be an m-dimensional vector of slack variables. The following

optimisation problem defines the primal soft-margin SVM:

min
1

2
‖w‖2

2
+ C ‖ξ‖

1

w.r.t. w ∈ R
n, ξ ∈ R

m, b ∈ R

s.t. yi (〈w, φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . ,m,

ξi ≥ 0, i = 1, . . . ,m,

where b ∈ R is the bias, and C ∈ R is the penalty parameter.

The primal problem can be converted into the dual form by

using the technique of Lagrange multipliers. The dual SVM

is written as the following optimisation:

max
m
∑

i=1

αi −
1

2

m
∑

i,i′=1

αiαi′yiyi′κ(xi, xi′)

w.r.t. α ∈ R
m

s.t.
m
∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . ,m,

where α = (α1, . . . , αm)⊤ and κ(x, x′) = 〈φ(x), φ(x′)〉 is

called the kernel function.
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B. Multiple Kernel Learning

For MKL, given a kernel function κ, we will use φκ(·)
to denote a feature space mapping satisfying κ(x, x′) =
〈φκ(x), φκ(x

′)〉. In MKL, we consider a family of kernels

K and the corresponding function class

FK = {x 7→ 〈w, φκ(x)〉 | ‖w‖2 ≤ 1, for some κ ∈ K} .

Let K = {κ1, . . . , κp} denote a family of kernels, where

each kernel κj is called the jth base kernel. The following

kernel family is formed using a convex combination of base

kernels:

Kcon(κ1, . . . , κp) =







κλ =

p
∑

j=1

λjκj | λj ≥ 0,

p
∑

j=1

λj = 1







.

This kernel family is considered finite dimensional. From

now on, we shall use φi = φκi
to denote the feature space

corresponding to the kernel function κi.

We proceed by looking for a good combination of kernels

within the SVM optimisation problem, by setting up the

following elastic-net MKL problem defined by [4], [9]:

min
1

2

p
∑

j=1

µ

λj

‖wj‖
2

2
+

p
∑

j=1

(1− µ)‖wj‖
2

2
+ C ‖ξ‖

1

w.r.t wj ∈ R
n, ξ ∈ R

m, b ∈ R, λ ∈ R
p, µ ∈ (0, 1]

s.t. yi





p
∑

j=1

〈wj , φj(xi)〉+ b



 ≥ 1− ξi, i = 1, . . . ,m,

p
∑

j=1

λj = 1, λj ≥ 0, j = 1, . . . , p,

ξi ≥ 0, i = 1, . . . ,m,

where wj is the weight vector of the jth feature space φj .

We will use the dual of this optimisation problem, which

due to space constraints, we do not state here. We refer the

interested reader to [4] for details.

III. EXPERIMENT

A. The MDL Drug Data Report Database

The MDL Drug Data Report (MDDR) database is used

in this paper [10]. It is a collection of biologically relevant

molecules which are compiled from journals and patent lit-

erature. Many extensive experimentations have been carried

out on this dataset [11], [12], [13], [14]. There are 102,512

molecules which are represented by four types of fingerprints

as follows:

1) BCI (Barnard Chemical Information) fingerprint is

generated by the use of a fragment dictionary based

method [15]. The dictionary gives the relationship

between substructures and corresponding bits in the

fingerprint. It contains 1052 bits.

2) Daylight fingerprint uses a hashing based method [16]

and does not require a pre-defined fragment dictionary.

Therefore, a bit is not required to have a specific as-

signed fragment. Moreover, a fragment may have more

than one corresponding bit. The Daylight fingerprint is

represented by a 2048-bit string.

3) Extended-connectivity Fingerprint (ECFP) is one of the

most popular fingerprint in this application. It repre-

sents molecular structures by means of circular atom

neighbourhoods [17]. ECFP 4 is used in this work.

“4” indicates the maximum diameter of the circular

neighbourhoods considered for each atom. It contains

1024 bits.

4) Unity fingerprint uses both structural keys and hashing

based method [18]. It is represented by a 988-D binary

string (60 bits of structural keys plus 928 hashed from

compounds).

We are searching for 11 activity classes (I1-I11) which

have been commonly used in previous research e.g. [11],

[12], [13], together with the nine most diverse activity classes

(D1-D9) in the MDDR database [14], as shown in Table I.

The diversity can be identified by mean self-similarity values

which, in this work, are calculated by a Jaccard/Tanimoto

coefficient (J/T) with ECFP 4 fingerprint as shown in Table I.

These values are used to indicate how similar or dissimilar

the data points are to each other. They can provide a degree

of homogeneity for each activity class which reflects the

degree of difficulty for each screening task. If the degree

of homogeneity of an activity class is high, there is a

high chance of retrieving active molecules. The number of

balanced training samples (50% active and 50% inactive) for

each activity class (nTr) is set to approximately 20% of the

number of active molecules in each activity class (nActive)

in the database.

B. Experimental Setup

As mentioned previously, the MDDR database is widely

used. Hert and his colleagues showed that the most effective

approach for this dataset is to use similarity score fusion.

Moreover, binary kernel discrimination (BKD) is the current

state-of-the-art algorithm for this dataset [11]. We compare

the elastic-net MKL with the similarity score fusion ap-

proach, namely the SUM method as our baseline. It scores

each molecule by using an average similarity value calculated

by a J/T with four different types of fingerprint. However,

this may not be a fair comparison because in this approach,

the similarity score uses only active molecules in the training

set. In contrast, we consider inactive molecules in the training

set too. In this work, we only investigate the linear case.

Therefore, we cannot directly compare MKL with BKD.

BKD makes a use of the binomial kernel which is a nonlinear

function based on a radial basis function (RBF) [7]. In this

work, we compare the elastic-net MKL to individual SVMs

trained with linear kernels instead. It should be noted that the

BKD algorithm has strong connections with kernel logistic

regression [12] which also has a relationship to SVM. This

leads to a similar level of performance of these algorithms

in both the linear and nonlinear cases.

The experiments were run 10 times with different random

data splits. Five-fold cross validation is used as a tool to

tune parameters for each method e.g. C parameter in SVM.



TABLE I

THE 11 ACTIVITY CLASSES AND THE NINE MOST DIVERSE ACTIVITY CLASSES IN MDDR DATABASE.

Index Activity Class nActive nTr Mean
Self-similarity

I1 Renin Inhibitors 1130 226 0.338±0.091
I2 Angiotensin II AT1 Antagonists 943 190 0.270±0.093
I3 HIV Protease Inhibitor 750 150 0.227±0.092
I4 Thrombin Inhibitor 803 162 0.212±0.090
I5 Substance P Antagonists 1246 250 0.180±0.080
I6 5HT3 Antagonists 752 150 0.176±0.089
I7 D2 Antagonists 395 80 0.175±0.093
I8 5HT1A Agonists 827 166 0.167±0.086
I9 5HT Reuptake Inhibitors 359 72 0.155±0.095
I10 Protein Kinase C Inhibitor 453 92 0.143±0.102
I11 Cyclo-oxygenase Inhibitor 636 128 0.132±0.078

D1 Dopamine beta-Hydroxylase Inhibitors 94 20 0.173±0.143
D2 Phospholipase A2 Inhibitors 704 142 0.153±0.085
D3 Aldose Reductase Inhibitors 882 176 0.148±0.079
D4 Aromatase Inhibitors 513 104 0.141±0.104
D5 Lipoxygenase Inhibitors 2555 512 0.135±0.058
D6 Reverse Transcriptase Inhibitors 519 104 0.134±0.084
D7 Muscarinic (M1) Agonists 848 170 0.132±0.078
D8 NMDA Receptor Antagonists 1311 262 0.125±0.069
D9 Nitric Oxide Synthase Inhibitors 377 76 0.124±0.092

The tuned parameters are selected on the basis of the sum

of active rank position, e.g., if all NA active compounds are

ranked in the first NA positions, the rank sum is minimal.

For the elastic-net MKL, we investigated µ = {1, 0.5, 0}.

C. Experiment Results

The experimental results are shown in Table II. The 20

activity classes are ranked according to the ratio of the

mean self-similarity of actives and the mean similarity value

between actives and inactives in the database (hereafter,

RMS) by a J/T with ECFP 4 fingerprint. The percentage of

the maximum number of active compounds retrieved in the

top 5% of the database is reported together with the number

of retained samples in each method. Fusion by similarity

scores for only actives calculated from four fingerprints

achieves 55.79% accuracy on average across 20 activity

classes and 10 runs. Using the SVM on each fingerprint can

perform better than fusing the scores on average, moreover, it

can deliver sparser solutions. This is important because speed

of recall is important in a VS task. Again, the performance

of the task can be improved by combining four different

types of fingerprints using MKL. It can be seen that elastic-

net MKL with µ = 0 is the best performing among other

methods, followed by µ equal to 0.5 and 1, respectively. We

tested the significance level of the difference between the

means of two independent samples by the t-test. Elastic-net

MKL outperforms most of individual SVMs (p < 0.001),
except in the case of elastic-net MKL with µ = 1, which

is better than an individual SVM with Daylight and ECFP 4

fingerprints at the significance levels p < 0.01 and p < 0.05,

respectively.

When µ = 0, the elastic-net MKL chooses a 2-norm

regularisation, which gives rise to a weight for each kernel,

but does not induce sparsity amongst the choice of kernels,

as shown in Fig. 1. To encourage some sparsity, µ is

set to 0.5 which leads the elastic-net MKL choosing a

combination of 1-norm and 2-norm regularisation. In this

instance, elastic-net MKL puts more weight on Daylight

and Unity fingerprints but reduces the weight of BCI and

ECFP 4. The overall picture is much the same when only 1-

norm MKL regularisation is used (µ = 1), creating the most

sparse solution. In the case of 1-norm MKL regularisation,

MKL tends to choose only two fingerprints, this leads to

an increase in the number of retained samples in SVMs at

75.05%, while 2-norm MKL regularisation is at 69.67% (see

Table II for details).

Fig. 2 shows that the performance of the retrieval task is

good when homogeneity activity classes are performed, on

the other hand, the performance drops when heterogeneity

(diverse) activity classes are searched for. Moreover, the

more homogeneous the activity classes, the less the number

of retained samples, as shown in Fig. 3.

Elastic-net MKL displays large improvements (up to 13%)

with respect to the performance of individual SVMs on

accuracy for those heterogeneous activity classes but small

improvements (<2%) on homogeneous activity classes as

shown in Fig. 4.

IV. CONCLUSION

In this paper, we have successfully combined four types of

fingerprint descriptors for the purpose of drug screening, and

improved the performance significantly on heterogeneous

classes, with a small improvement on homogeneous ones.

It should be noted that heterogeneous activity classes are

much more difficult for VS. Hence, it is a good result for

MKL if it does notably better on them. Furthermore, we

have proposed a procedure that allows a fast speed of recall

due to the sparse nature of the solutions found. Clearly,

this is advantageous for the screening process. Finally, by

using the MKL algorithm we can start to understand the



TABLE II

COMPARISON OF MAXIMUM ACTIVES RETRIEVED (%) IN TOP 5% OF SAMPLE ALONG WITH THE PERCENTAGE OF RETAINED SAMPLES (BELOW)

Index Activity Classes RMS Data SVM MKL
Fusion BCI Daylight ECFP 4 Unity µ = 1 µ = 0.5 µ = 0

I1 Renin Inhibitors 2.114 96.03 98.27 98.06 99.08 98.24 98.56 98.71 98.94
24.91 30.58 37.12 30.53 36.11 35.27 30.49

I2 Angiotensin II AT1 Antagonists 1.733 98.20 95.80 96.64 98.74 96.49 97.38 97.17 97.57
49.47 47.68 52.37 46.79 51.68 55.11 48.37

D1 Dopamine beta-Hydroxylase Inhibitors 1.679 74.05 87.98 83.33 84.64 88.81 87.02 87.38 87.38
82.50 90.00 97.50 85.00 93.50 93.50 93.50

I3 HIV Protease Inhibitor 1.520 70.01 83.26 85.42 90.22 84.24 87.67 88.58 89.90
52.47 59.27 64.80 52.67 65.00 63.67 61.13

I4 Thrombin Inhibitor 1.518 67.40 85.80 87.47 93.67 87.33 88.95 89.86 92.02
50.37 61.36 63.58 56.98 68.21 65.62 61.73

D7 Muscarinic (M1) Agonists 1.339 56.32 87.04 85.95 84.78 85.54 87.31 88.70 89.49
54.06 61.59 66.53 54.00 66.12 60.88 62.00

D4 Aromatase Inhibitors 1.403 75.23 89.05 88.00 90.52 89.07 90.02 91.76 92.28

56.73 63.85 77.12 55.67 70.19 67.40 65.48
I6 5HT3 Antagonists 1.339 65.89 79.87 86.00 85.27 80.03 86.06 87.31 89.14

60.60 66.73 74.27 61.27 74.40 70.60 65.00
I7 D2 Antagonists 1.309 54.45 61.35 62.42 65.30 58.31 62.48 64.54 65.15

78.38 82.13 87.88 80.25 90.13 87.50 89.25
I5 Substance P Antagonists 1.358 63.42 79.63 85.90 87.38 82.08 85.47 87.15 88.53

52.68 56.04 65.60 50.60 65.16 61.72 58.44
I8 5HT1A Agonists 1.321 55.46 75.26 80.08 79.10 65.28 79.57 80.60 79.19

59.22 64.70 70.06 62.89 73.73 69.52 71.69
I9 5HT Reuptake Inhibitors 1.305 53.00 53.81 61.67 57.34 57.28 59.81 62.85 63.31

78.06 81.94 92.08 83.47 93.47 87.08 86.67
D2 Phospholipase A2 Inhibitors 1.171 36.95 49.97 60.57 60.38 52.04 57.93 61.14 63.32

72.96 78.38 80.92 72.11 83.94 81.76 74.65
I10 Protein Kinase C Inhibitor 1.199 45.68 54.18 68.53 69.07 61.77 69.39 70.54 71.89

74.13 82.28 86.63 76.85 88.26 87.50 83.59
D3 Aldose Reductase Inhibitors 1.174 47.10 82.75 79.85 81.28 79.12 82.53 82.95 84.77

64.49 67.90 73.64 65.51 75.63 74.03 69.83
D9 Nitric Oxide Synthase Inhibitors 1.208 40.62 72.83 72.83 72.33 78.61 75.10 75.52 76.52

78.82 81.45 94.74 76.84 90.66 90.53 87.63
D6 Reverse Transcriptase Inhibitors 1.155 35.35 54.07 61.73 61.18 59.01 61.78 62.12 65.29

76.06 78.37 86.35 74.90 86.83 85.96 81.44
I11 Cyclo-oxygenase Inhibitor 1.113 27.41 56.40 63.25 55.96 53.99 64.79 64.49 66.77

72.42 78.75 89.30 72.34 83.67 81.48 77.97
D8 NMDA Receptor Antagonists 1.117 30.11 64.24 68.56 66.30 63.30 70.06 73.94 73.46

52.82 67.48 66.45 65.99 75.46 71.60 65.84
D5 Lipoxygenase Inhibitors 1.107 23.16 57.86 65.40 55.01 58.23 64.45 67.14 69.13

53.03 60.12 65.39 55.29 68.87 63.93 58.65

Average 55.79 73.47 77.08 76.88 73.94 77.82 79.12 80.20
62.21 68.03 74.62 64.00 75.05 72.73 69.67

importance of some descriptors over others, based on the

weightings applied to each kernel. The larger the weight,

the more important that descriptor is for the prediction task

at hand.

For future research directions we feel that the use of non-

linear kernels with the descriptors we have used may further

improve performance. Also, another direction of research

would be to employ different types of descriptors (i.e.,

graphs, strings, etc.) and a larger number of descriptors

(kernels) too. Furthermore, it has been shown that the p-

norm MKL algorithms perform better than the standard 1 or

2-norm variants, so we would like to apply the p-norm MKL

to the drug screening problem described in this paper.
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